文理两开花
试图在混沌中寻找秩序

Album
主播:
肖小跑、Will42
出版方:
肖小跑
订阅数:
1.96万
集数:
73
最近更新:
1周前
播客简介...
《文理两开花》:文科生思维和理科生思维在科技、经济、文化、哲学、货币、数字资产、元宇宙、Web3.0中的碰撞。我们觉得当下的时代精神是“混沌”,试图在混沌中寻找秩序。 微信群:请在shownotes中寻找“文理小助手(拉尔夫)” Twitter:LeiSalin_XP;@Will42W TG群:https://t.me/wenlipodcast 苹果播客|Spotify | Google Podcast | 等泛用型平台搜索收听《文理两开花(海外版)》(苹果播客中国区可复制open.firstory.me手动添加节目) 主播: 1. 文科生代表肖小跑:《羊群的共识》、《牧羊人的哲学课》作者,金融行业从业者及连续创业者,播客《墙裂坛》主播,公众号“肖小跑”主理人。 2. 理科生代表Will:数学和计算机学霸,兼通技术与金融。若干年前“all-in”区块链领域,成为区块链行业知名意见领袖之一。 文字内容会发表在《文理两开花》newsletter中:https://wenli.substack.com/ ,欢迎订阅。
文理两开花的创作者...
文理两开花的节目...

新专辑预告:集异璧之大成

文理两开花

我们这个挖了一年多的坑、夸下海口要做播客界第一解读GEB系列播客,的美好愿望,终于要实现了。 预告视频版:见微信公众号https://mp.weixin.qq.com/s/_dUShQdcMAjqWyPCDzGh9A 这是一本坑了自己很多年的书,多少次鼓起勇气,拿起来,又放下了。但是用它来盖泡面实在太厚,这么多年只用它杀死过一只小强。 但这的确是一本空前的奇书。买它的时候,念想也许和大家一样,听说是一位认知学大咖写的一本杰出的科普名著,以“很特别”的方式普及数理逻辑、人工智能领域中的艰深理论。但没想到的是,它的“特别”原来是“清奇”——智商难以承受之清奇。 翻开第一页,扑面而来的不是爱因斯坦,牛顿,或者图灵,而是巴赫那些脍炙人口的曲谱;然后是艾舍尔用巨大脑洞构思出来的奇特的画作;再然后是哥德尔不完备定理;最后,合上这本书的时候,还会看到封面上印着的“普利策文学奖”。 这真是一个“不可能三角”。以我浅薄的见识,一直认为数学、艺术和音乐这三个浩瀚的宇宙,一个人最多只能精通两个。但能同时在这三个宇宙中畅游的人,也许才能像作者侯世达一样——能用哲学数学来解构巴赫,能用哥德尔不完备定理的眼镜去欣赏艾舍尔,还能把数理逻辑学、可计算理论、人工智能、语言学、遗传学、音乐和绘画统统都放进“禅宗”的故事里,并用“乌龟”,“阿基里斯”,“螃蟹”和“树懒”之间的对话表达出来。 这本书的名字“G.E.B.”是三个名字的前缀——哥德尔、艾舍尔、巴赫。这三个名字,一个是二十世纪最伟大的数学家,一个是能把数学画进画中的艺术家,还有一个是西方近代音乐之父。 书的英文原名中有一个词——“Braid”。这是一个双关词,它的意思是把东西绑在一起的“带子”,但又是一个数学名词,暗示这本书正题和副题,上、下两个部分之间有“G、E、B”和“E、G、B”这几个首字母在次序上的照应。所以从书名开始,就是一个前后呼应的怪圈儿。 再看中文名:中文书名翻译成《集异璧之大成》。“集异璧”是GEB三个英文字母的译音,“大成”则取自于佛教、哲学和音乐典籍——所以这个名字既与原著的内容相呼应,又起到了一个双关作用——这又是一个前后呼应的圈儿。 再看封面图:是一个诡异的、悬在空中的、三个交汇的平面,分别在三个互相垂直的方向上投影出三个不同的汉字:“集”、“异”、“璧”(或者“G”、“E”、“B”)——就这样把哥德尔、艾舍尔和巴赫这三块稀世之宝嵌为一体,”集异璧之大成“。这三位大咖,就变成了某个奇妙的统一体在不同方向上的投影——又是一个怪圈儿。 侯世达的文字就像乐谱一样,对智商是一种酸爽的挑战。他会先提出一个概念,在“乌龟”,“阿基里斯”,“螃蟹”和“树懒”之间的对话中出场;然后在下一章中更深刻地“回响”出来,结构上或松散或严格地摹仿巴赫的乐曲、埃舍尔的幻觉艺术,和哥德尔的数学逻辑游戏——怪圈儿套怪圈儿,层层又叠叠。 给大家朗读几段原文感受一下它有多“奇”: 1. “巴赫” “巴赫《音乐的奉献》中有一首极不寻常的卡农,它有三个声部,最高声部是国王主题的一个变奏,下面两个声部则提供了一个建立在第二主题之上的卡农化的和声。 这两个声部中较低的那个声部用C小调唱出主题,较高的那个则在差五度之上唱同一主题。当它结束时——或者似乎要结束时——已不再是C小调而是D小调了。巴赫在听众的鼻子底下转了调。而且这一结构使这个“结尾”很通顺地与开头联接起来,这样我们可以重复这一过程并在E调上回到开头——这些连续的变调带着听众不断上升到越来越遥远的调区。听了几段之后,听众会以为他要无休止地远离开始的调子了,然而在整整六次这样的变调之后,原来的C小调又魔术般地恢复了!所有的声部都恰好比原来高八度。在这里整部曲子可以以符合音乐规则的方式终止。 人们猜想,这就是巴赫的意图。但是巴赫很明确地留下了一个暗示,说这一过程可以无休止地进行下去。也许这就是为什么他在边空上写下了“转调升高,国王的荣耀也升高。 在这部卡农中,巴赫给了我们有关“怪圈”这一概念的第一个例子。所谓“怪圈”现象,就是当我们向上(或向下)穿过某种层次系统中的一些层次时,会意外发现,我们正好回到了开始的地方。” 2. "艾舍尔" “把怪圈概念最优美最强烈地视觉化的人是荷兰版画家艾舍尔。艾舍尔创作了一些迄今以来最富于智能启发力的杰作。他的许多作品都源于悖论、幻觉或双重意义。他的作品里常常有一个化入艺术形式里的潜在概念。怪圈就是艾舍尔画中最常出现的主题之一。例如石版画《瀑布》,把它和巴赫的卡农做一下比较——会发现巴赫和艾舍尔用两个不同的“调子”——音乐和美术——演奏着同一个主题。 怪圈概念中所隐含的是无穷概念。循环不就是一种以有穷的方式表示无休止过程的方法吗?无穷在艾舍尔的许多画中起着重要作用。艾舍尔的天才在于,他不只是能设想出,而且还实际画出了几十种半实在半虚幻的世界,几十种充满了怪圈的世界,他似乎正在邀请他的观众们走进这些怪圈中去。” 3. "哥德尔" “在我们看到的巴赫和艾舍尔的怪圈例子中,存在着有穷与无穷之间的冲突,因而使人有一种强烈的悖论感——我们直觉感到这里面一定涉及到了什么数学问题。二十世纪确实发现了一个产生了巨大反响的数学上的对应物。正像巴赫和艾舍尔的圈是作用于人们简单而古老的直观一样(音阶和楼梯),哥德尔对数学系统中怪圈的发现,也有着它简单而古老的直观根源。 哥德尔的发现把一个古老的哲学悖论转化成数学上的说法。那个悖论就是“说谎者悖论”:一个克里特岛人说过一句不朽的话:“所有克里特岛人都是说谎者。”更直截了当的说法是:“我在说谎”——如果你假定它是真的,那么它会立即产生相反的结果,使你认为它是假的。但是,如果你假定它是假的,同样会产生相反的结果,让你又回到它“必须是真的”这一点上。你可以试试看。” 我们这个挖了一年多的坑、夸下海口要做播客界第一解读GEB系列播客,的美好愿望,终于要实现了。《文理两开花》开始进入GEB季,每一集,我和Will老师会按照章节,根据一个逻辑线,把这本奇书中重要、精彩的部分拿出来,用文和理两种思维来碰撞。希望能帮助大家更好地理解这部经典。 至于会用多少集来读完,目前完全不清楚。我们且但行好事,莫问前程。 BGM: 1. Here she comes again, by Hatchatorium 2. Ave plague, by King Plague 关于《文理两开花》: 《文理两开花》是文科生思维和理科生思维在科技、经济、文化、哲学、货币、数字资产、元宇宙、Web3.0中的碰撞。当下的时代精神是“混沌”,我们试图在混沌中寻找秩序。 Twitter: @LeiSalin_XP @Will42W TG群(开放):t.me 收听平台: 小宇宙:文理两开花 苹果播客|Spotify | Google Podcast | 等泛用型平台搜索收听《文理两开花(海外版)》(苹果播客中国区可复制open.firstory.me手动添加节目) 文字稿和延伸阅读: 微信公众号《文理两开花播客》 《文理两开花》newsletter。欢迎订阅:wenli.substack.com 其他平台: 即刻:文理两开花 《文理两开花》微信群:请添加坛子微信(WeChat ID: BKsufe),注明:文理两开花

9分钟
1k+
6天前

EP01:集异璧奇书其书,侯世达奇人其人

文理两开花

时间戳: 00:03:32 “只有它和《红楼梦》配得上奇书称号“ 00:17:28 我们与GEB的渊源 00:27:53 能写出奇书的人必为奇人—侯世达奇人其人 00:38:14 “GEB“和”集异壁“究竟代表什么?“Braid”和“大成”里有多少层含义? 本期我们先从整体印象开始,聊一聊:它为什么是“奇书”?为什么这么多人膜拜?各自和GEB的渊源?还有侯世达奇人其人,以及 “集异璧之大成”的含义。 1.GEB为什么是“奇书”? “奇书”这个称号是公认的,应该没什么人反对。几乎所有人提到它时都十分严肃,一脸虔诚,隔空透出一股“现在大家起立,整理一下自己的智商,集中注意力打开这本书”的肃杀之气。它是一本代表智商的书。 这是除了红楼梦,在我的书架上住的最久的书。它的厚度和密度都让我很焦虑——体积大,内容晦涩、跨学科、结构和表达方式奇特。所以每年都是“年初书单第一位,年尾书架落灰处”的那一本。 知乎上有个问题:看《哥德尔、艾舍尔、巴赫书:集异璧之大成》需要看哪些前置书籍?应该看些什么书来打基础?大家的答案中包括但不限于王浩《哥德尔》,《从逻辑到哲学》,庄子和周易,高等数学,数理逻辑,天体物理,相对论,量子力学,计算机编程,人工智能,分子生物学,康德,罗素,禅宗,道家,巴赫,埃舍尔…… 基本是在劝退。 我的感觉:大部分人读了导言和第一章,基本都会在前几页被吸引住——很少看到有人能把音乐、艺术、和数学用一条逻辑串起来,非常新奇,感觉打开了一扇世界的们。 虽然但是,导言之后会不会花了几个礼拜、甚至几个月的时间完成它,取决于你是不是一个对数学、计算机科学和逻辑感兴趣的人;是不是一个有点数学天赋、能理解如何“用数学的视角去观察世界”,或者至少能get用数学的眼睛去看世界的兴奋——这不是人人都有,尤其是文科生。文科生读这本书时,大概率会感到书中的逻辑非常复杂,而且不清楚这么死抠的意义何在。我的建议是,读时最好强硬把自己代入一个理科生,一个数学nerd的角色中。 说它“奇”,其实也没错。 能被归为“奇书”的,除了GEB,大概就是《红楼梦》了。Will老师有分教:所谓“奇书”,一定是内容包罗万象、看似完全没有相关性的领域,却都能够在一本书中呈现,内在又有特定的逻辑或脉络。 《红楼梦》符合“奇书”标准。内容并非宝玉黛玉的爱情故事那么简单——它能用元春来影射政治,用贾府年终收租和过年吃酒绘出当时的经济状况,还有诗词歌赋和饮酒作令的文学精华。最妙的是开篇金陵十二钗命运谶语,既是历史的影射,也是未来的预言。《红楼梦》是典型的“奇书”,将整个历史阶段或者画卷无所不包地展现在其中,又有一个清晰的脉络和历史过程。 GEB也是。内容看死简单——全书论证“哥德尔不完全性定理是数理逻辑人类思维领域最深刻最顶级之成果”—— 但其内在逻辑极为复杂。能把哥德尔、数论、埃舍尔的绘画、巴赫的音乐、阿基里斯、芝诺、乌龟、螃蟹、阿拉丁灯神,还有人工智能、禅宗公案、中华传统文化,统统连在一起,但并不是缝合怪。 最神奇的是,书中构造了一套形式系统,即一套数学体系,通过自我指代、怪圈和“永恒金带”,将整个逻辑串联起来,每一点都相互关联。 除此之外,“奇”点数不胜数,到处都是思维游戏。甚至连我们的“GEB解读播客“,都有可能成为这个“自我指代”怪圈中的一部分。 2.侯世达奇人其人 十年前《大西洋月刊》上一篇专稿,把侯世达写成了一部电影。 侯世达奇人,从小着迷于各种智力活动——可一天不间断练琴数小时,可决定背诵1200行俄罗斯文学,可花几个月时间学习小语种,可花大量时间编写猜字程序。他还会反复琢磨毕达哥拉斯定理的十几种证明方法,乐此不疲。 14岁那年,小妹妹被确诊大脑患病,无法理解人类语言。从那之后,侯世达就开始对“大脑“和”事物“之间的关系产生了浓厚兴趣——那一坨灰质是怎么决定我们的思维和自我的呢? 1972年,粒子物理专业的博士生侯世达对论文感到迷茫,于是开车横穿美国,一路思考“思考”本身。他曾试图将想法写信给朋友,却在30页后停笔。七年后,这些思考变成了700页巨著GEB,并赢得了普利策奖。 在侯世达眼中,人工智能不应沦为解决实际问题的工具,而应肩负起探索人类思维奥秘的使命。与其让机器模仿人类行为,不如让机器学会真正的“思考”。 然而,在GEB出版的年代,人工智能领域正经历着剧变——追求”实用”的大环境迫使学界将研究重心转向军事应用。侯世达觉得这股风气舍本逐末,嗤之以鼻。他批判“深蓝”这类程序徒有其表, 缺乏对人类思维的真正理解;更希望通过GEB引导人们关注人类智慧本身。可惜曲高和寡,最终被追求“速效”的学术界所冷落,沉寂数十年。 3.“集异璧之大成”的含义? 英文原名是“Gödel, Escher, Bach - an Eternal Golden Braid”,直译为《哥德尔、艾舍尔、巴赫——一 条永恒的黄金辫带》。 将这三者联系在一起的概念:“永恒的金色辫子”—— “braid”,是个英文多义词,不仅有双关的意味,还是一个数学名词:“辫群”(Braid group)——数学纽结理论的一个概念——暗示了正题和副题之间有“G、E、B”(上篇)和“E、G、B”(下篇)词首字母在次序上的照应。 Braid还有“循环”的概念——在等级系统中发生的自我参照或悖论——先把这个概念用三个直观、形象化的方法表现出来:巴赫的经典,赋格、卡农;埃舍尔的楼梯,自指的双手;哥德尔不完备定理,数论的逻辑缺陷,说谎者悖论——都和这种逻辑上的循环、自指(自己包含自己)、拧巴、诡异的逻辑缺陷,有很多可类比之处。就像那个拧在一起,无限循环的莫比乌斯大麻花,让你眩晕。 为啥叫“集异壁“呢? 翻译是个大工程。侯世达对GEB的西班牙文、德文版很不满,嫌译者不花心思重构书中的文字游戏,反映“结构性难点”——是“走气的可乐”,“不辣的川菜”。但中文译者却愿意接受挑战,摸索文字游戏和对应的结构双关、想办法在中文里制造出英文藏头诗,几乎是用中文又重新写了一遍。 标题里藏着三个人的名字首字母,哥德尔、埃舍尔、巴赫;“璧‘,美玉也; 而"大成",把佛教哲学通通揉和进去,也和原文"辫子"呼应上了。东方的智慧和西方的思辨,完美融合。上、下 篇的篇名也分别由原来的“GEB”、“EGB”改为“集异璧”和“异集璧”。 最后再说说历史背景。 哥德尔时代,正是大家都在思考“语言”和“思维”关系的年代。维特根斯坦提出“语言的边界即思维的边界”,此话一出,整个哲学界炸锅。维也纳小组里的一帮天才开始探索思维、语言和数理逻辑的关系,发展出了逻辑实证主义。哥德尔深受影响。 更有趣的是,康托尔发明了集合论,罗素提出“说谎者悖论”,把集合论搞得一团糟;等罗素完成《数学原理》,又被哥德尔生生打碎——因果循环,难逃怪圈。整个数学逻辑史就是一条巨大的莫比乌斯带。 延伸阅读 The Man Who Would Teach Machines to Think:The Atlantic, November 2013 Issue www.theatlantic.com 关于《文理两开花》: 《文理两开花》是文科生思维和理科生思维在科技、经济、文化、哲学、货币、数字资产、元宇宙、Web3.0中的碰撞。当下的时代精神是“混沌”,我们试图在混沌中寻找秩序。 Twitter: @LeiSalin_XP @Will42W TG群(开放):t.me 收听平台: 小宇宙:文理两开花 苹果播客|Spotify | Google Podcast | 等泛用型平台搜索收听《文理两开花(海外版)》(苹果播客中国区可复制open.firstory.me手动添加节目) 文字稿和延伸阅读: 微信公众号《文理两开花播客》 《文理两开花》newsletter。欢迎订阅:wenli.substack.com 其他平台: 即刻:文理两开花 《文理两开花》微信群:请添加坛子微信(WeChat ID: BKsufe),注明:文理两开花​

53分钟
4k+
6天前

EP02: 《导言》烧脑三重奏——哥德尔、艾舍尔与巴赫的跨界幻想

文理两开花

前一集已经成功把大家拉下水了,还有几位朋友给我发了新买的GBE的照片。那就welcome to 天坑,欢迎和我们一起填天坑。无论后面发生了什么都不要怪我们,就当给大脑来了一次铁三训练。 本期和大家聊一聊导言。我读的大部分书,都会直接从第一章开始,几乎从来不看导言。但是GEB不一样,《导言》部分是最吸引人的,也是一篇非常精彩的、独立的提纲挈领之作;这是让你脑回路打开的章节。 当然啦,也很有可能,大家和GEB的缘分也永远停留在这一章。 这一章把哥德尔的数学、埃舍尔的画作、和巴赫的音乐丝滑交织在了一起。数学、音乐、艺术这三个领域,精通其中一个已经很难。三个全精通,且能串在一起,发现共同规律,还是得在奇人写的奇书中体会。 本期剪辑:小碗 ----------------------- 时间戳: 01:04 《导言》部分:为什么哥德尔的数学、艾舍尔的画作、巴赫的音乐能在这本书中交织在一起?侯世达算是博学家吗? 17:15 巴赫的音乐:用数学的视角是怎么看的? 30:50 埃舍尔画和哥德尔的不完全性定理的相似性?是怎么对上的? 47:15 哥德尔为什么是Will老师的精神图腾?哥德尔不完备定理如量子力学般伟大? 50:31 数学曾经出现过三次危机?30年代以前的数理逻辑史:数学基础的大厦是怎么被哥德尔推翻的? 因字数限制,读后感内容请移步微信公众号文理两开花:EP02: 《导言》烧脑三重奏——哥德尔、艾舍尔与巴赫的跨界幻想 关于《文理两开花》: 《文理两开花》是文科生思维和理科生思维在科技、经济、文化、哲学、货币、数字资产、元宇宙、Web3.0中的碰撞。当下的时代精神是“混沌”,我们试图在混沌中寻找秩序。 Twitter: @LeiSalin_XP @Will42W TG群(开放):t.me 收听平台: 小宇宙:文理两开花 苹果播客|Spotify | Google Podcast | 等泛用型平台搜索收听《文理两开花(海外版)》(苹果播客中国区可复制open.firstory.me手动添加节目) 文字稿和延伸阅读: 微信公众号《文理两开花播客》 《文理两开花》newsletter。欢迎订阅:wenli.substack.com 其他平台: 即刻:文理两开花 《文理两开花》微信群:请添加坛子微信(WeChat ID: BKsufe),注明:文理两开花

87分钟
4k+
6天前

EP03:阿基里斯、乌龟和芝诺:人工智能的极限是什么?

文理两开花

我们的几个奇怪的主人公终于登场了!一只乌龟、古希腊英雄阿基里斯、芝诺。后面章节中还会出现几个奇怪的角色,包括螃蟹。 这就是GEB著名的招牌结构:在每个章节前,侯世达老师会编一篇对话小故事,把内容引出来。这也是我每一章最爱看的部分,因为相对容易懂。 侯式幽默,虽然有时很冷,但是每个对话都回味无穷,看完这个小故事,带着印象进入下一章,读完后再回来重温一下,方知其奥妙之处。有时会恍然大悟,原来对话中另有玄机;但有时文科生上头,也会想:侯世达老师炫技有点儿过了,让读者觉得智商堪忧可能并不是一件好事。但是,侯世达老师并不care读者智商的承受能力。 上一期留了一个悬念:提到了图灵机——他和哥德尔不完备定理有啥关系?哎别说,那还是很有关系的,不仅有关系,还能带出到底“什么是智能”的一些深层哲学。 本期和大家解读的第一章内容,也是层层嵌套的绝活儿,不仅带出了第二次数学危机,也带出了整个数学大厦、计算机人工智能最重要的基础,地基——形式系统。 大家可以对比一下,听本期播客之前之后,分别能在这一章中找出多少“梗”? 本期烧脑提纲: * (00:06:22) 全书和大家见面的第一篇对话是《三部创意曲》。 * (00:09:26) 这么一篇奇怪的对话,到底埋了多少梗?为啥叫“三部创意曲”? * (00:18:26) 芝诺禅宗谐音梗,你看出来了吗? * (00:23:39) 什么是形式系统? * (00:30:22) 用国际象棋举个例子 * (00:36:21) 侯氏龟能梦电子龟吗? * (00:42:27) MIU还是WJ? * (00:48:56) 机器能“跳出系统”吗? * (00:56:52) 大梗来了 * (01:02:14) 哥德尔和图灵机:人工智能的极限是什么? 由于字数限制,详细内容请移步微信公众号文理两开花:https://mp.weixin.qq.com/s/ZQQq0MPufU1NqUa__l3Ofg 本期剪辑:小碗 关于《文理两开花》: 《文理两开花》是文科生思维和理科生思维在科技、经济、文化、哲学、货币、数字资产、元宇宙、Web3.0中的碰撞。当下的时代精神是“混沌”,我们试图在混沌中寻找秩序。 Twitter: @LeiSalin_XP @Will42W TG群(开放):t.me 收听平台: 小宇宙:文理两开花 苹果播客|Spotify | Google Podcast | 等泛用型平台搜索收听《文理两开花(海外版)》(苹果播客中国区可复制open.firstory.me手动添加节目) 文字稿和延伸阅读: 微信公众号《文理两开花播客》 《文理两开花》newsletter。欢迎订阅:wenli.substack.com 其他平台: 即刻:文理两开花 《文理两开花》微信群:请添加坛子微信(WeChat ID: BKsufe),注明:文理两开花

73分钟
3k+
6天前
文理两开花的评价...

空空如也

EarsOnMe

加入我们的 Discord

与播客爱好者一起交流

立即加入

扫描微信二维码

添加微信好友,获取更多播客资讯

微信二维码

播放列表

自动播放下一个

播放列表还是空的

去找些喜欢的节目添加进来吧