MSAI 营销科学∞艺术
MSAI 营销科学∞艺术,科技艺术 商业增长!

Album
主播:
前瞻钱瞻、谭北平Peking
出版方:
前瞻钱瞻
订阅数:
4,552
集数:
65
最近更新:
4周前
播客简介...
MSAI ( Marketing Science ∞ Arts Innovation )营销科学∞艺术创新平台 的播客,由 M360 MSAI & 创+平台创始人 钱峻 及 营销科学家 谭北平 联合主播。 MSAI,推进企业营销科学∞艺术战略体系化建设,从中国到全球,助力企业增强营销科学体系,夯实营销艺术体系,创建营销科学∞艺术融合创新开放平台,推动营销创新、品牌焕新及多元可持续商业增长。 MSAI将营销科学∞艺术创新融合,突破了传统营销的桎梏,为企业带来了一种全新的营销模式和增长路径及战略体系化的建设。 MSAI营销科学∞艺术 播客将围绕体系内的 108 议题及36个项目. 欢迎您关注和收听 MSAI ( Marketing Science ∞ Arts Innovation )营销科学∞艺术创新, 用科技与艺术的力量,推动商业持续增长!
MSAI 营销科学∞艺术的创作者...
MSAI 营销科学∞艺术的节目...

EP.65 《生成》解读 4--生成式AI重构营销逻辑 当人类被AI超越 营销该何去何从?

生成式人工智能的浪潮正以前所未有的力量冲击着营销领域的传统范式。当图灵测试不再是挑战,当 AI 绘画能斩获艺术大奖、AI 生成的摄影作品能骗过专业评委,当 GPT-4 在各类考试中超越绝大多数人类考生,甚至在高考中取得可上顶尖学府的成绩时,我们不得不直面一个核心问题:当人类在诸多能力上被 AI 超越,营销该何去何从? 本期播客为《生成:AI生产力重构营销新范式》新书解读第三章,聚焦生成式 AI 带来的新红利与挑战,从 AI 能力边界的突破、营销创造力的重构、消费者态度的博弈到行业应对策略,解析 AI 如何从工具升级为企业智力资源,以及营销从业者应如何在这场变革中找到破局之道。 共谈嘉宾: 谭北平 — 营销科学家 MSAI联合主播 / 秒针营销科学院院长 钱峻 — 营销科学家 MSAI 联合主播 / MSAI M360 创+平台创始人 SHOWNOTES: 1:23 《生成》第三章新红利--人类被超越时,营销该怎么做? 3:40 图灵测试对于深层次的人工智能已经不再是挑战。 6:15 人工智能在其他知识领域具备比肩甚至超过人类的全科能力。 8:16 从2024到2025年,AI的能力从文科生已经逐渐转变成为了理科生。 11:45 AI已经能够深刻洞察市场的趋势,并基于趋势来创造合适的广告方案。 14:53 人工智能新产品创意上,人工智能已经超越了顶尖商学院的工商管理硕士。 18:43 人工智能不止于生成内容,它能够表达情感、感受情感。 19:18 大众对于人工智能生成内容的态度存在算法厌恶的倾向。 24:37 AI推理的过程再加上混合专家模型,等效工作年限可能超过八年。 27:16 反驳是人类也是人类智慧进化的一个部分,AI也是同理。 31:31 AI有多模态识别的能力,看得懂你的视觉表达的效果,而且给效果准确的命名。 34:25 AI法律层面,工具不拥有版权,使用工具的人可以声称拥有版权, 一、AI 已突破智能边界:从工具到企业核心智力资源 图灵测试的本质是对机器 "类人交流能力" 的验证,但如今的生成式 AI 早已突破这一框架。2022 年 AI 绘画《太空歌剧院》斩获艺术大奖、2023 年 AI 生成摄影作品《虚假记忆电工》获国际赛事认可,证明在视觉创作领域,专家已无法区分人机作品。 这种 "不可区分性" 并非偶然 ——AI 的能力已从内容生成延伸至情感创造,既能表达温度,也能精准捕捉人类情绪,成为真正意义上的 "智力资源"。 这种转变的核心在于,AI 不再是被动工具,而是可与人力资源并列的企业核心资产。正如 GPT-4 在统一律师资格考试中超越 90% 应试者、在 SAT 考试中击败 93% 考生,其展现的知识储备与逻辑能力,已相当于顶尖专业人才。 2025 年国内 AI 大模型在高考理科卷突破 650 分的成绩,更印证了其从 "优秀文科生" 向 "全能型人才" 的进化。 二、营销创造力的代际更替:AI 已实现多维超越 在营销的核心创造力领域,AI 的表现呈现 "碾压式进步": * 广告文案能力:2023 年 AI 文案等效工作经验为 2.47 年,2024 年提升至 3.6 年,2025 年借助混合专家模型(MoE)技术,已接近 8 年专业水准。双盲测试显示,消费者完全无法区分人机文案,而 AI 作品在洞察市场趋势方面甚至超越资深从业者。 * 新产品创意:宾夕法尼亚大学沃顿商学院的实验极具颠覆性 ——AI 生成的大学生群体产品创意中,前 16 名全为 AI 作品,目标用户购买意愿显著高于 MBA 团队。这意味着在 "创造用户真正需要的价值" 上,AI 已掌握更精准的密码。 这种超越的底层逻辑,在于 AI 实现了 "量与质的双重突破":既能通过海量数据训练形成精准洞察,又能通过思维链推理、多智能体协作(Agent 化)模拟人类团队的共创过程,最终产出兼具创新性与落地性的方案。 三、消费者认知博弈:破解算法厌恶的关键路径 尽管 AI 能力卓越,但消费者对其仍存在 "算法厌恶" 的隐性壁垒。复旦大学研究显示,当消费者感知内容由 AI 生成时,购买意愿会显著下降,核心症结在于 "可信度质疑"。但这一困境存在破局点 ——人机协作模式能完全消除这种厌恶。 数据表明,标注 "人机共创" 的营销内容,不仅能提升消费者信任度,更能强化品牌的 "创新形象" 与 "效率感知"。这提示营销从业者:AI 的应用需兼顾能力释放与消费者心理,透明化人机协作过程,将技术优势转化为品牌资产。 四、行业应对策略:从被动适应到主动掌控 面对 AI 的加速进化,营销行业需构建新的能力体系: * 技术层面:拥抱混合专家模型(MoE)与 Agent 化趋势。AI 已从 "单兵作战" 升级为 "多智能体协同",能模拟消费者反馈、整合艺术专家与法律专家视角,实现广告片 "分秒帧级" 的优化,这要求从业者掌握 AI 团队的管理逻辑。 * 教育层面:院校需重构课程体系。正如 "汽车时代无需苦练奔跑",营销教学应从 "培养创意生产者" 转向 "培养 AI 协作者",开设 AI 工具应用、多模态内容优化等实战课程。 * 法律层面:明确权责边界是前提。当前法律框架下,AI 作为工具不具备版权,使用者需承担创作成果的全部权利与责任,这要求企业建立 AI 内容合规审查机制,规避侵权风险。 生成式 AI 带来的不是替代危机,而是营销行业的 "进化契机"。当 AI 能承担基础创意、数据洞察等工作时,人类的价值将向战略决策、情感共鸣、伦理判断等更高维度迁移。未来的顶级营销人,必然是那些既能驾驭 AI 能力,又能守住人性温度的 "混合体"。 TAKEAWAY 1、生成式 AI 已突破图灵测试,成为企业核心智力资源。 2、AI 在艺术创作领域,专家难分人机作品。 3、AI 具备全科能力,考试成绩超越多数人类。 4、AI 文案等效工作年限快速增长,逼近资深从业者水平。 5、AI 新产品创意受消费者青睐度超顶尖商学院人才。 6、消费者对纯 AI 内容存在算法厌恶,人机协作可化解。 7、人机共创内容能提升品牌创新与效率形象。 8、AI 呈现 agent 化趋势,多智能体协同能力堪比人类团队。 9、法律层面,AI 生成内容版权归使用者,责任由使用者承担。 10、行业需转型,聚焦 AI 工具运用与协作能力培养。 思考点 1、当 AI 在营销创造力上持续超越人类,营销从业者的核心竞争力应向何处迁移? 2、如何平衡 AI 生成内容的效率优势与消费者的算法厌恶心理? 3、人机协作模式下,营销行业的人才培养体系需做出哪些根本性调整?

38分钟
99+
4周前

EP.64 《生成》解读 3--AI不仅是技术工具,更是重新定义生产关系、商业逻辑与竞争壁垒的“新推动力”

在数字技术飞速迭代的当下,生成式人工智能正以前所未有的力量重塑着营销领域的底层逻辑。《生成》第二章围绕 “新的推动力 —— 揭秘生成式人工智能” 展开深度探讨,为我们揭开了这项技术如何从原理层面向应用层面渗透,并最终重构营销范式的神秘面纱。 从大语言模型的海量学习、概率赋权到文本生成,从基于人类反馈的强化学习(RLHF)到适配企业需求的绩效反馈强化学习(RLPF),生成式人工智能的技术内核逐渐清晰。它不仅实现了内容的海量生产,更推动营销从 “工具升级” 迈向 “生产力革命”,催生出从生产到消费的全链条变革。 本期播客为《生成:AI生产力重构营销新范式》新书解读第二章,深入解析生成式人工智能的工作机制、与企业的融合路径,以及它对营销范式的颠覆性影响,为理解这一 “新推动力” 提供全景视角。 共谈嘉宾: 谭北平 — 营销科学家 MSAI联合主播 / 秒针营销科学院院长 钱峻 — 营销科学家 MSAI 联合主播 / MSAI M360 创+平台创始人 SHOWNOTES: 1:26 《生成》第二章---新的推动力揭秘生成式人工智能。 2:31 AI完成内容生成第一步:学习,通过海量文本训练语言模型。 4:37 AI完成内容生成第二步:赋权,计算词语之间的概率关系。 5:16 AI完成内容生成第三步:生成,基于输入词预测下一个最可能的词。 10:23 RLHF(基于人类反馈的强化学习)结合了人类反馈技术,优化人工智能表现。 16:01 RLPF绩效反馈会训练出一个符合企业需求的模型。 17:34 提示词本身是一个是人类与人工智能互动的一个方法。 21:30 人工智能需要用户尝试不同的措施才能得到满意。 27:05 重构营销范式本质上就是生产力的变革。 29:58 今天所有行业都在应用生成式人工智能 32:31 人工智能的第一把刀是砍了人工智能的创造者。 37:20 在不久的将来,人工智能负责所有,工作不是一种必须,而是一种选择。 41:27 成本越稀化了,它越来越普遍化和大量的供给了,就生产力的爆发。 43:33 创造就是整个世界充满了无限的可能性,你用AI去探索。 50:30 AI的生产力,它改变了这种就是我们过去的委托中介的这种模式。 52:14 内容在海量生产之中,筛选是未来企业做事情的一个点。 一、生成式 AI 的技术内核:从 "学习" 到 "生成" 的三阶跃迁 生成式人工智能的运作遵循着精密的逻辑链条,其核心工作流程可拆解为三个递进阶段,共同构建起与人类交互的基础能力。 学习阶段是技术的根基。以 GPT 为代表的大语言模型(LLM)通过读取海量文本数据,涵盖书籍、文章等多元内容,借助 Transformer 神经网络架构,捕捉语言中的复杂模式与结构规律。这一过程如同人类的 "广泛阅读",最终形成庞大的语言知识库,为后续生成提供素材储备。 赋权阶段是逻辑的核心。模型通过计算词语间的概率关联,建立 "词与词" 的排序系统。借助深度学习中的反向传播算法,模型不断优化权重参数,从而精准预测句子结构的合理性 —— 这种能力类似人类说话时对 "下一个词" 的潜意识判断,是生成连贯内容的关键。 生成阶段是价值的输出。当用户输入提示词(Prompt)后,模型基于前两阶段的积累,预测下一个最可能出现的词,并通过 "温度(Temperature)" 参数调控输出风格:低温(接近 0)生成确定保守的内容,高温(大于 1)则呈现更多随机性与创造力,如同人类多巴胺分泌对思维活跃度的影响。 二、人机协同的进化逻辑:从 RLHF 到企业定制化训练 生成式 AI 之所以能贴合人类需求,核心在于 "基于人类反馈的强化学习(RLHF)" 机制。 这一过程通过三步闭环实现:模型生成多元答案后,人类评审员依据连贯性、易懂性、无害性等标准排序;基于排序结果训练 "奖励模型",使其掌握人类偏好;最终通过强化学习算法持续优化,让 AI 输出更符合人类预期的内容。这种机制赋予 AI"讨好性人格",使其如同人类沟通者般预判听众感受。 当技术下沉到企业场景,"绩效反馈的强化学习(RLPF)" 成为定制化关键。 如同新员工需通过绩效反馈融入企业文化,企业可将业务指标作为训练信号,让通用大模型进化为贴合自身需求的专属工具。这种从 "通用" 到 "专属" 的转化,正是 AI 落地企业的核心路径。 三、营销范式的重构:从 "工具升级" 到 "生产力革命" 生成式 AI 对营销的影响绝非简单的效率提升,而是引发生产关系变革的 "范式重构",其核心体现在三个维度的颠覆。 生产侧的变革最为直观。过去一人一天产出 1 篇营销文案已属高效,如今借助 AI 可实现百篇级量产,这种生产力飞跃类似工业革命中 "从手工到流水线" 的转变。更关键的是,内容生产不再依赖专业团队,企业可通过 AI 快速生成广告创意、图文素材乃至视频内容,彻底打破创作壁垒。 消费侧的互动模式被重塑。传统数字营销依赖 "标签匹配 + 程序化投放",而 AI 能根据用户实时特征生成个性化内容 —— 不再是 "千人一面" 的物料推送,而是 "千人千面" 的实时服务。这种从 "被动匹配" 到 "主动响应" 的转变,重构了品牌与用户的连接方式。 商业逻辑的颠覆尤为深刻。AI 催生了 "先生产后交易" 的新模式:创作者利用 AI 批量生产文化元素与品牌的碰撞内容(如青铜器汉堡创意),通过社交媒体测试热度后再对接甲方,彻底改变了传统 "委托 - 创作" 的中介模式。这种 "用生产力试错,用市场筛选" 的逻辑,让营销创新更具爆发力。 四、企业的破局之道:在海量生产中锚定 "筛选权" 面对 AI 带来的内容爆炸,企业的核心竞争力正从 "生产能力" 转向 "筛选能力"。当 AI 可批量生成千篇内容时,筛选出符合品牌调性、契合用户偏好、能转化为商业价值的优质内容,成为决定营销效果的关键。 这种筛选并非简单的人工判断,而是要建立一套融合企业价值观、业务指标与用户反馈的评估体系,如同 RLHF 机制中 "奖励模型" 的作用。 提示词工程(Prompt Engineering)则是提升筛选效率的工具。通过精准描述需求(如 "撰写小红书风格的环保文案")、设定边界条件(如 "禁止虚构数据")、预留交互窗口(如 "不清楚时可反问"),企业能引导 AI 生成更贴合需求的内容,从源头降低筛选成本。如今的提示词已从短句指令进化为万字级策略,成为人机协同的核心技能。 生成式 AI 正在书写营销行业的新篇章。它不仅是技术工具,更是重新定义生产关系、商业逻辑与竞争壁垒的 "新推动力"。对企业而言,理解其技术原理、把握其应用逻辑、锚定其核心机遇,才能在这场变革中实现从 "适应" 到 "引领" 的跨越。 TAKEAWAY 1、生成式人工智能通过学习、赋权、生成三步流程完成内容创作。 2、温度参数控制生成内容的随机性与创造性,类似人类多巴胺的作用。 3、RLHF(基于人类反馈的强化学习)让 AI 更贴合人类期望。 4、RLPF(绩效反馈的强化学习)可训练出符合企业需求的模型。 5、提示词是人机互动的关键,其工程正不断升级复杂化。 6、生成式 AI 重构营销范式,本质是生产力变革引发的连锁反应。 7、人工智能已渗透各行业,营销领域几乎所有流程都可应用。 8、未来工作可能成为选择,AI 或承担大部分生产任务。 9、AI 催生 “先生产后交易” 的新营销模式,颠覆传统中介逻辑。 10、内容海量生产时代,企业核心竞争力在于筛选符合自身需求的内容。 思考点 1、生成式 AI 的温度参数与人类多巴胺系统的相似性,对优化人机协作有何启示? 2、从 RLHF 到 RLPF 的演进,如何影响企业对 AI 工具的定制化路径? 3、内容海量生产时代,企业该如何建立独特的筛选标准以保持竞争力?

55分钟
99+
1个月前

EP.63 《生成》解读 2--生成式人工智能:跨越创新鸿沟 从技术破局到产业重构的全维跃迁

生成式人工智能正以颠覆性力量重塑科技与商业的底层逻辑。当 DeepSeek 以周级速度刷新 ChatGPT 用户增长纪录,当中国 AI 产品数量突破 307 个且用户日均使用时长激增,这些数据印证的不仅是技术迭代,更是一场跨越创新鸿沟的社会范式变革。 从文生图的跨模态突破到通用智能的终极愿景,生成式 AI 正沿着 “技术突破 - 市场渗透 - 产业重构” 的轨迹,推动人类文明向智能时代加速迈进。本期播客为《生成:AI生产力重构营销新范式》新书解读第一章(下)。 共谈嘉宾: 谭北平 — 营销科学家 MSAI联合主播 / 秒针营销科学院院长 钱峻 — 营销科学家 MSAI 联合主播 / MSAI M360 创+平台创始人 SHOWNOTES: 2:21 文字生视频引入了深度学习中的注意力机制和时序卷积网络。 4:46 用户规模的扩大是帮助深层次人工智能跨越创新鸿沟方面的重大意义。 6:07 创新鸿沟理论是指早期采用者和早期大众之间存在巨大的差异。 9:08 中国用户在人工智能产品上的总访问市场也显著性增长。 11:35 起点时刻的到来---科技快速发展可能到带来的质变的时刻。 12:41 人工智能可以分为分析式人工智能、深层次人工智能以及通用人工智能。 14:35 生成式人工智能有三个核心能力:创造能力、推理能力、互动能力。 18:45 生成式人工智能的发展,使得通用人工智能的时代到来不断加速。 20:09 生成式人工智能跨越了创新鸿沟,未来目标是通用人工智能。 21:54 人工智能高峰是全部人类都在使用AI,场景上会持续的拓张。 一、技术破壁:从跨模态映射到认知能力进化 1. 多模态生成的底层突破 2021 年 OpenAI 推出的 Dall・e 模型,通过转换器架构实现文本到图像的精准映射,其核心在于跨模态深度学习对 “语言 - 视觉” 联合概率分布的学习。 这种机制如同人类画家将文字描述转化为画面的过程,但借助对抗网络与算力优势,AI 能以指数级效率完成 “创作 - 优化” 循环 —— 当系统接收到 “落日熔金的海边城堡” 指令时,会通过判别器不断校准画面的光影、比例与意境,直至输出符合语义的视觉内容。 视频生成领域的演进更凸显技术跃迁。早期模型因分辨率与时序连贯性缺陷,只能生成碎片化动态画面,而引入注意力机制与时序卷积网络后,如今的文生视频技术已能处理 10 分钟以上短片。 通过捕捉 “人物行走 - 场景变换” 的时空逻辑,实现动态内容的语义一致性。这种从静态到动态的跨越,标志着 AI 从 “符号映射” 向 “场景理解” 的认知升级。 2. 推理能力:从语言生成到逻辑演绎 DeepSeek 等模型展现的推理能力,打破了生成式 AI “语言表达工具” 的局限。传统文生图技术本质是语言能力的视觉转化,而推理能力让 AI 具备了 “思维链” 构建能力 —— 例如根据 “城市交通拥堵” 数据,不仅能生成拥堵场景图,还能推演 “增加地铁线路 - 分流私家车” 的解决方案。 这种能力使 AI 从 “内容生产者” 进化为 “问题解决者”,正如人类从学会说话到掌握逻辑推理的认知进阶。 二、市场破局:创新鸿沟理论与用户规模革命 1. 跨越鸿沟的关键转折 杰弗里・摩尔的创新鸿沟理论指出,早期采用者与早期大众间的认知断层是技术普及的最大障碍。VR/AR 等技术因无法说服早期大众 “实用价值”,至今困于 “创新者陷阱”,而生成式 AI 凭借用户规模的指数级扩张实现突破:2024 年底用户从早期大众扩散至晚期大众,2025 年更渗透至老年与儿童群体。 ChatGPT 突破 2 亿月活的纪录被 DeepSeek 以 “周级速度” 刷新,全球 1757 个 AI 产品的供给侧爆发,印证了技术从 “小众玩具” 到 “大众基础设施” 的质变。 2. 中国市场的范式引领 中国在这场变革中展现独特优势:307 个本土 AI 产品构建起完整生态,用户日均使用时长超工作场景,形成 “生活娱乐 - 工作学习” 的全场景渗透。 这种 “供给 - 需求” 的双向繁荣,源于中国消费者对 AI 的高信任度与企业的激进拥抱 —— 当制造业用 AI 优化设计流程,农业通过生成式模型预测病虫害,中国正成为全球 AI 应用的 “超级试验场”,其经验将为全球技术扩散提供范式参考。 三、产业重构:从生产力工具到文明塑造者 1. 制造业的设计革命 生成式 AI 与 CAD 软件的融合,彻底颠覆工业设计流程。传统模式中,设计师需手动绘制数十版方案,而 AI 能基于参数生成数千个创新设计,例如根据 “轻量化汽车部件” 需求,同步输出材料组合、结构形态与应力分析报告。 更前沿的应用中,AI 已能直接操控 CAD 软件自动建模,将 “创意构思” 到 “工程实现” 的周期压缩 80%。这种变革不仅提升效率,更突破人类思维局限,催生如 “分形结构建筑”“仿生机械臂” 等超越传统认知的设计。 2. 营销领域的认知重构 生成式 AI 的三大核心能力(创造、推理、互动)正在重塑商业逻辑: * 创造能力:自动生成千人千面的营销文案、海报,甚至根据用户画像动态调整广告剧情; * 推理能力:通过分析用户浏览轨迹,推演消费动机并生成个性化推荐策略; * 互动能力:情感陪伴机器人能识别儿童情绪并生成安抚故事,老年陪伴 AI 可根据对话内容自动检索时政新闻。 这种 “数据驱动 + 创意生成” 的模式,让营销从 “经验主义” 迈向 “科学艺术融合”,例如某美妆品牌用 AI 生成 10 万组包装设计,通过用户测试快速锁定爆款方案,新品研发周期缩短至传统模式的 1/5。 四、未来图景:通用智能的机遇与奇点思考 1. 从生成式到通用智能的跃迁 当前 AI 发展正沿 “分析式 - 生成式 - 通用式” 路径演进:分析式 AI 如车牌识别,仅能基于数据做判断;生成式 AI 能归纳演绎创造新内容;而通用人工智能(AGI)将具备跨领域学习能力 —— 从预订机票、管理智能家居到操控汽车,甚至自主研发科学理论。 OpenAI 首席执行官预言 AGI 将在 “2.7 年内” 到来,马斯克更认为 “两年内实现”,这种乐观源于深度学习对 “数据模式无限捕捉” 的潜力。 2. 奇点时刻的文明挑战 当 AI 从 “工具” 进化为 “智能体”,社会结构将面临深层变革。 制造业中,AI 设计 + 机器人生产可能使 80% 流水线岗位消失;服务业中,智能客服与陪伴机器人或将重构人机交互模式。 这种变革伴随 “奇点时刻” 的争议 —— 当机器智能超越人类,科技发展将进入不可预测的加速期,正如数学家维纳所言:“我们正在创造与人类认知水平相当的智能,而它们的进化速度将远超我们。” 在变革前夜做理性的激进者 生成式 AI 的爆发不是技术周期的偶然,而是智能文明的必然。对企业而言,需在 “效率提升” 与 “范式创新” 间找到平衡点 —— 既用 AI 优化现有流程,更需重构组织架构以适应 “人机协作” 新生态;对个人而言,从 “AI 使用者” 升级为 “AI 协同者”,培养 “技术理解 + 创意洞察” 的复合能力,将成为穿越变革的核心竞争力。 毕竟,当 AI 开始具备推理与创造能力,人类的价值将更聚焦于 “不可被算法替代的人性光辉”—— 这既是挑战,更是文明跃迁的契机。 TAKEAWAY 1、生成式 AI 通过跨模态技术实现文生图、文生视频,推动多模态交互发展。 2、用户规模从技术狂热者扩散至普通大众,标志生成式 AI 跨越创新鸿沟。 3、创新鸿沟理论揭示早期大众需实证案例才接受新技术,VR 等技术仍未突破。 4、生成式 AI 与 CAD 结合颠覆工业设计,实现方案自动生成与精准建模。 5、生成式 AI 具备创造、推理、互动三大核心能力,重塑营销与服务模式。 6、中国成全球 AI 应用高地,产品数量与用户时长增长凸显市场开放度。 7、技术正从生成式 AI 向通用人工智能演进,目标实现人类级跨领域智能。 8、通用人工智能可能在数年内到来,引发关于机器智能超越人类的奇点讨论。 9、生成式 AI 推动产业全链条变革,从制造业设计到生活娱乐场景全面渗透。 10、拥抱 AI 需理解技术脉络,从工具使用者升级为智能协同时代的创新参与者。 思考点 1、生成式 AI 跨越创新鸿沟的关键因素是什么? 2、生成式 AI 的三大核心能力如何重塑产业? 3、通用人工智能到来将引发哪些社会变革?

25分钟
99+
1个月前

EP.62 《生成》解读 1--生成式AI奇点时刻:人工智能发展经历了哪些关键阶段 核心技术突破是什么?

当机器开始像人类一样思考、创作甚至超越人类在特定领域的能力时,我们正站在一个前所未有的历史节点上。 从 1956 年达特茅斯会议首次提出人工智能概念至今,这项技术历经多次兴衰,终于在生成式人工智能的推动下迎来爆发时刻。大语言模型与转换器架构的突破,让机器不仅能理解语言,更能自主生成内容;生成对抗网络的发展,则使高质量图像生成成为可能。 这些技术进步不仅重塑了人工智能的发展轨迹,更在商业营销等领域掀起了底层逻辑的革命。本期播客为《生成:AI生产力重构营销新范式》新书解读第一章(上),从技术演进视角,剖析生成式人工智能如何从人类智能的梦想走向现实。 共谈嘉宾: 谭北平 — 营销科学家 MSAI联合主播 / 秒针营销科学院院长 钱峻 — 营销科学家 MSAI 联合主播 / MSAI M360 创+平台创始人 SHOWNOTES: 2:18 第一章:新风口--人类智能的起点时刻,让机器像人类一样工作一直是人类的梦想。 4:53 从1960到2023年人工智能的发展经历了多次的爆发和寒冬。 5:38 1956年的达特茅斯会议上人工智能叫AI这个概念首次被提出。 6:04 20世纪50年代后期,逻辑理论学家用程序展示了这一时刻的雄心和创新。 7:06 20世纪70年代的,人工智能研究迎来了第一次寒冬。 8:10 1975年,机器学习和大数据的技术推动人工智能到新高峰期。 8:30 20世纪70和80年代,科学家将专家级的知识编写成程序,以解决特定问题。 9:19 20世纪90年代中期开始,探索通过数据驱动的方法来实现知识和建构模型支持。 12:53 2012年开始深层次人工智能带来的人工智能的大爆发。 14:05 大语言模型的发展,是今天人工智能实现规模化应用的关键推动力。 16:27. 2018年,GPT首次亮相,就采用了单向转换器的架构,专注于文本生成任务。 19:29 深层对抗网络推高了高质量图像生成技术的进步。 人工智能演进的三幕史诗:从规则编程到数据涌现 第一幕:基于规则的符号主义黄金时代(1956-1970s) 1956 年达特茅斯会议正式提出 AI 概念,开启了通过符号系统与逻辑推理模拟智能的探索。逻辑理论家程序成功证明数学定理,ELIZA 聊天程序实现基于规则的人机对话,这些突破建立在艾伦・图灵计算理论与初代计算机技术基础之上。 但这种 "人工编写规则" 的模式存在致命缺陷:1970 年代,AI 系统在面对动态环境时暴露出知识获取成本高、计算资源消耗巨大、系统脆弱性等问题,首次寒冬降临,AI 研究退回实验室场景。 第二幕:机器学习与大数据的拉锯战(1975-2010s) 1975 年机器学习与大数据技术推动 AI 进入新阶段,专家系统通过编码领域知识解决特定问题,如医疗诊断与工程设计。但这类系统依赖人工输入规则,缺乏自学习能力,1980 年代末再次陷入低谷。 1990 年代中期,支持向量机、贝叶斯网络与神经网络的应用带来第三次高峰,1997 年 IBM 深蓝击败国际象棋世界冠军成为标志性事件。然而数据标记成本高、统计方法解释性不足等问题,导致 AI 发展再次遇阻。 第三幕:深度学习引爆的生成式革命(2012 至今) 2012 年深度神经网络(DNN)突破,联合大数据与 GPU 算力,将 AI 带入爆发期。 2016 年 AlphaGo 通过深度学习与强化学习击败李世石,证明机器在复杂决策领域超越人类的可能;2017 年谷歌 Transformer 架构引入注意力机制,模仿人类 "认知聚焦" 模式,实现长文本高效处理;2018 年 GPT-1 凭借单向 Transformer 专注文本生成,至 GPT-3 以 1750 亿参数实现多任务学习,生成式 AI 迎来规模化应用拐点。 与此同时,2014 年生成对抗网络(GAN)通过生成器与判别器的对抗训练,将图像生成质量推向新高度。 生成式技术的底层突破:从大脑仿生到计算范式革命 神经元模型与计算规模的仿生学突破 1943 年麦克洛克 - 皮茨神经元模型首次提出人工神经元概念,为神经网络研究奠定基础。人类大脑超 800 亿神经元的协作机制,在 GPT-3 的 1750 亿参数规模中实现计算层面的映射 —— 这种 "用规模模拟生物智能" 的思路,突破了早期模型无法处理非线性问题的局限。 Transformer 的注意力机制更直接复刻人类认知特征:如同大脑通过 "注意力手电筒" 选择性加工信息,AI 模型通过注意力权重分配实现长序列高效处理。 从 "规则编程" 到 "数据涌现" 的范式转移 传统 AI 依赖专家预设规则(如语法规则、医学诊断标准),而生成式 AI 通过海量数据训练实现 "规则自涌现"。 在自然语言处理领域,GPT 不再需要人工标记语法规则,而是从互联网语料库中自动学习语言规律;图像生成领域,GAN 通过对抗训练让模型自主掌握图像特征,无需人工定义 "人脸结构" 等先验知识。这种 "数据驱动而非规则驱动" 的范式,使 AI 突破特定领域限制,获得跨场景泛化能力。 多模态生成的技术协同效应 生成式 AI 的革命性还体现在技术融合上:大语言模型(LLM)与视觉模型的协同,实现文本 - 图像 - 视频的跨模态生成。2018 年 GPT 专注文本生成,2021 年 DALL-E 实现文本生成图像,2023 年多模态模型已能同步处理文字、图像、语音等信息。 这种协同效应源自 Transformer 架构的通用性 —— 注意力机制不仅适用于语言处理,也可扩展至视觉特征提取,形成统一的多模态建模框架。 生成式 AI 重塑营销:从效率工具到价值创造引擎 营销技术底层逻辑的重构 技术始终是营销进化的核心驱动力,但生成式 AI 带来的不是工具升级,而是底层逻辑重构。传统营销依赖 "人工创意 + 数据分析" 的线性模式,生成式 AI 则实现 "创意生产 - 用户洞察 - 渠道优化" 的闭环自动化。 生成式技术正在成为商业运作的底层逻辑,其价值在于将营销从 "信息传递" 升级为 "价值共创"——AI 不仅能生成文案、设计海报,更能基于用户数据模拟消费场景,预测需求趋势。 生成式营销的三大颠覆性特征 * 个性化规模生产:基于大语言模型,品牌可针对每个用户生成专属沟通内容。如电商平台为不同消费者自动生成个性化产品描述,实现 "一人一策" 的精准触达,打破传统营销 "批量生产" 的局限。 * 多模态创意自动化:生成式 AI 覆盖文字、图像、视频全内容形态。广告公司可通过 AI 快速产出数百版营销素材,适配不同渠道与场景,将创意生产效率提升数十倍,同时降低内容制作成本。 * 实时互动智能进化:对话式 AI 结合生成技术,使客服、导购等场景实现自然语言交互。AI 客服能根据用户对话实时生成解决方案,甚至主动推荐产品,将被动服务转化为主动营销,重构用户体验流程。 技术与营销的深度耦合场景 在内容营销领域,生成式 AI 可基于产品数据自动生成差异化文案,如美妆品牌针对同一产品生成适合不同肤质人群的卖点描述;在用户运营层面,AI 能根据消费者行为数据生成个性化沟通策略,如电商平台为沉默用户定制专属召回方案;在广告投放环节,AI 可实时优化广告素材与投放策略,根据实时反馈调整创意方向,提升转化率。这种 "技术 + 营销" 的深度耦合,正在重塑商业价值创造的方式。 站在智能奇点的思考:当 AI 生成超越人类创意 从 1943 年人工神经元模型到 2023 年多模态生成模型,AI 用 80 年走完了人类大脑数百万年的进化历程。生成式技术的爆发不仅是技术奇点,更是商业思维的重构点 —— 当 AI 能自主生成创意、预测需求,营销人需要重新定义自身价值:从 "创意生产者" 转变为 "AI 训练师" 与 "价值校准者",负责为 AI 提供优质数据、设定伦理边界、把控价值方向。 正如大脑神经元通过连接产生智慧,生成式 AI 正通过技术与商业的深度连接,开启智能时代的新篇章。理解这场变革的本质 —— 不是 AI 替代人类,而是人机协同创造新可能 —— 将成为企业在智能经济中占据先机的关键。 TAKEAWAY 1、1956 年达特茅斯会议首次提出 AI 概念,开启人类让机器像人一样工作的梦想。 2、人工智能发展历经多次爆发与寒冬,每次寒冬都为后续突破蓄积力量。 3、1943 年提出的人工神经元模型,奠定神经网络和现代人工智能研究基本框架。 4、2012 年深度学习推动人工智能进入黄金期,2016 年 AlphaGo 击败人类棋手成标志性事件。 5、2017 年谷歌 Transformer 架构引入注意力机制,革新自然语言处理技术。 6、2018 年 GPT 首次亮相,采用单向转换器架构专注文本生成,后逐步升级。 7、生成对抗网络(GAN)于 2014 年提出,推动高质量图像生成技术进步。 8、大语言模型是当前人工智能实现规模化应用的关键推动力。 9、生成式 AI 实现从 “规则编程” 到 “数据驱动” 的范式转移,无需人工定义过多规则。 10、生成式 AI 正重塑营销,带来个性化生产、多模态创意自动化等颠覆性变革。 思考点 1、人工智能发展经历了哪些关键阶段?各阶段的核心技术突破是什么? 2、生成式 AI 与传统 AI 的本质区别是什么?其底层技术逻辑如何实现? 3、生成式 AI 对营销领域带来了哪些颠覆性变革?未来还有哪些应用可能?

20分钟
99+
1个月前
MSAI 营销科学∞艺术的评价...

空空如也

EarsOnMe

加入我们的 Discord

与播客爱好者一起交流

立即加入

扫描微信二维码

添加微信好友,获取更多播客资讯

微信二维码

播放列表

自动播放下一个

播放列表还是空的

去找些喜欢的节目添加进来吧