00:00:29 AI 进阶之路:不造轮子,而是给高手装上预知未来的眼睛 00:04:38 AI进化新思路:不说人话,怎么教得会? 00:09:24 你的 App 突然崩了?别急,AI 程序员正在赶来修复的路上 00:15:21 AI 也会看走眼?我们如何教它练就一双“火眼金睛” 00:19:21 如何教AI学会“举一反三”? 本期介绍的五篇论文: [CV] Back to the Features: DINO as a Foundation for Video World Models [Meta FAIR] https://arxiv.org/abs/2507.19468 --- [CL] GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning [UC Berkeley & Stanford University] https://arxiv.org/abs/2507.19457 --- [LG] Agentic Program Repair from Test Failures at Scale: A Neuro-symbolic approach with static analysis and test execution feedback [Meta] https://arxiv.org/abs/2507.18755 --- [CL] PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning [Meta Reality Labs] https://arxiv.org/abs/2507.18857 --- [LG] Scale-Consistent Learning for Partial Differential Equations [Caltech & Nvidia] https://arxiv.org/abs/2507.18813
我们一直在做加法,却忘了成功的另一半,是“减法”。
00:00:32 你的夸奖,正在“毒害”AI 00:05:22 数据大扫除:不止是扔垃圾,更是换风格 00:10:55 AI的“世界观”:它如何从零开始看懂现实? 00:15:46 AI的“省钱攻略”:如何花小钱办大事? 00:20:27 喂养AI的新艺术:从“吃什么”到“怎么吃” 本期介绍的无篇文章: [LG] Off-Policy Corrected Reward Modeling for Reinforcement Learning from Human Feedback [The University of Tokyo and RIKEN AIP] https://arxiv.org/abs/2507.15507 --- [LG] Distributional Unlearning: Forgetting Distributions, Not Just Samples [EPFL & Stanford University] https://arxiv.org/abs/2507.15112 --- [LG] Skill Learning via Policy Diversity Yields Identifiable Representations for Reinforcement Learning [Max Planck Institute for Intelligent Systems & University of Tübingen] https://arxiv.org/abs/2507.14748 --- [CL] Towards Compute-Optimal Many-Shot In-Context Learning [Google Cloud AI Research] https://arxiv.org/abs/2507.16217 --- [LG] LLM Data Selection and Utilization via Dynamic Bi-level Optimization [University of Chinese Academy of Sciences & Huawei Noah’s Ark Lab] https://arxiv.org/abs/2507.16178
“心有所信,方能行远。” 真正的“远”,不是抵达预设的终点,而是当你的信念被全世界质疑时,你依然敢于向你的造物,问出一个天真的问题,并最终,从它那里,听到了一声来自深渊的回响。
00:00:35 AI进化论:当机器开始自己设计自己 00:04:59 AI训练场上的新规则:别纠结错别字,看的是整篇文章 00:09:53 AI当医生?先等等,咱们换个活法儿 00:15:29 给AI做体检:我们能不花钱就看出模型好坏吗? 00:20:35 AI没书读了怎么办?一个“笨”方法里的新智慧 本期节目介绍的五篇论文: [LG] AlphaGo Moment for Model Architecture Discovery [Shanghai Jiao Tong University & SII] https://arxiv.org/abs/2507.18074 --- [LG] Group Sequence Policy Optimization [Qwen Team] https://arxiv.org/abs/2507.18071 --- [LG] Towards physician-centered oversight of conversational diagnostic AI [Google DeepMind & Google Research] https://arxiv.org/abs/2507.15743 --- [LG] SETOL: A Semi-Empirical Theory of (Deep) Learning [Calculation Consulting & Onyx Point Systems] https://arxiv.org/abs/2507.179 --- [LG] Diffusion Beats Autoregressive in Data-Constrained Settings [CMU & Lambda] https://arxiv.org/abs/2507.15857
我们的大脑拥有惊人的神经可塑性,一个微小的视角转变,就能重塑整个情感体验的版图。
00:00:36 AI“减肥”的秘密,被一个40年前的算法破解了 00:05:46 驯服AI的终极武器:不是模糊奖励,而是清晰清单 00:09:56 AI的“开窍”秘诀:如何教机器像高手一样思考? 00:14:53 给AI请个好私教的秘密 00:19:50 给AI画张图,它能看得更明白吗? 本期介绍的五篇论文: [LG] The Geometry of LLM Quantization: GPTQ as Babai's Nearest Plane Algorithm [ISTA & ETH Zürich] https://arxiv.org/abs/2507.18553 --- [CL] Checklists Are Better Than Reward Models For Aligning Language Models [CMU & Apple] https://arxiv.org/abs/2507.18624 --- [LG] Revisiting LLM Reasoning via Information Bottleneck [The University of Sydney & ByteDance] https://arxiv.org/abs/2507.18391 --- [CL] TRPrompt: Bootstrapping Query-Aware Prompt Optimization from Textual Rewards [EPFL] https://arxiv.org/abs/2507.18618 --- [LG] Does visualization help AI understand data? [Harvard University] https://arxiv.org/abs/2507.18022
当现实变得破碎、重复、无法忍受时,是故事,将这些碎片重新粘合,赋予我们一个可以继续走下去的理由。
00:00:30 给AI一支笔,它能撬动地球吗? 00:04:45 给AI请个“外援”,裁判才能更靠谱 00:09:09 和AI说话的艺术:你以为是聊天,其实是盖楼 00:14:29 AI界的“庖丁解牛”:如何用“乐高积木”搞定复杂工程难题? 本期介绍的四篇论文: [LG] Thinking Isn't an Illusion: Overcoming the Limitations of Reasoning Models via Tool Augmentations [UC Berkeley & Northeastern University] https://arxiv.org/abs/2507.17699 --- [CL] Can External Validation Tools Improve Annotation Quality for LLM-as-a-Judge? [University of Cambridge & Apple] https://arxiv.org/abs/2507.17015 --- [LG] Understanding Prompt Programming Tasks and Questions [CMU & JetBrains Research] https://arxiv.org/abs/2507.17264 --- [LG] A Learning-based Domain Decomposition Method [University of Cambridge & NVIDIA] https://arxiv.org/abs/2507.17328
生活的秘密,不在于“发现美”,而在于“不断发现”。它不是一个结果,而是一个动词,一种永不停止的探索姿态。
00:01:32 想让AI变聪明?关键不是喂饱它,而是教它如何“犯错” 00:07:12 你的“电量焦虑”,AI来想办法了? 00:11:21 给AI装上一个“选择性失忆”的大脑 00:15:41 AI“现学现卖”的秘密,可能被揭开了 00:21:06 AI也需要“自知之明”:我们如何教会机器谦虚? 本期介绍的几篇论文: [LG] From Reasoning to Super-Intelligence: A Search-Theoretic Perspective S Shalev-Shwartz, A Shashua https://arxiv.org/abs/2507.15865 --- [LG] Expert-Guided LLM Reasoning for Battery Discovery: From AI-Driven Hypothesis to Synthesis and Characterization S Liu, H Xu, Y Ai, H Li... Université de Montréal & University of Oxford https://arxiv.org/abs/2507.16110 --- [CL] Beyond Context Limits: Subconscious Threads for Long-Horizon Reasoning H Luo, N Morgan, T Li, D Zhao... MIT CSAIL https://arxiv.org/abs/2507.16784 --- [CL] Learning without training: The implicit dynamics of in-context learning B Dherin, M Munn, H Mazzawi, M Wunder... Google Research https://arxiv.org/abs/2507.16003 --- [LG] Beyond Binary Rewards: Training LMs to Reason About Their Uncertainty M Damani, I Puri, S Slocum, I Shenfeld... MIT https://arxiv.org/abs/2507.16806
通过给你即时的、廉价的多巴胺回馈,社交媒体的AI算法让你沉迷于“宣布”和“被看见”的快感,却在无形中,悄悄摧毁了你为真正达成目标所必需的、那套更为珍贵的内在奖赏系统。
与播客爱好者一起交流
添加微信好友,获取更多播客资讯
播放列表还是空的
去找些喜欢的节目添加进来吧