[人人能懂] 从数据纯度、反馈标尺到心智公理

AI可可AI生活

你是否想过,AI变聪明的速度,竟取决于数据里有多少“废话”?我们一句模糊的好评,又如何能变成让AI精准执行的指令?本期节目,我们将看到AI如何跳出经验的牢笼、自己悟出近道,并学会看人下菜碟,进化出因事而异的“情商”。我们甚至会揭示,洞察AI心思的终极难题,如何被巧妙地拆解成一道简单的计算题。准备好,和我一起探索这些最新论文背后的深刻智慧吧! 00:00:35 AI变聪明的秘密:不是模型有多神,而是数据里有多少“废话” 00:06:32 AI训练的两难困境:要么说不清,要么管太窄 00:12:11 AI导航升级:如何用“笨”数据,教出“聪明”的活地图? 00:18:03 AI的“情商”进化:怎么做到该一样时一样,该不同时不同? 00:23:45 猜心思的最高境界:把它变成一道简单计算题 本期介绍的几篇论文: [LG] Scaling Laws are Redundancy Laws [Georgia Institute of Technology] https://arxiv.org/abs/2509.20721 --- [CL] RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards [NVIDIA] https://arxiv.org/abs/2509.21319 --- [LG] Offline Goal-conditioned Reinforcement Learning with Quasimetric Representations [UC Berkeley & Princeton University] https://arxiv.org/abs/2509.20478 --- [CL] LLM Output Homogenization is Task Dependent [FAIR at Meta] https://arxiv.org/abs/2509.21267 --- [LG] Inverse Reinforcement Learning Using Just Classification and a Few Regressions [University of Washington & Netflix] https://arxiv.org/abs/2509.21172

29分钟
99+
1个月前

[人人能懂] 从失败步骤、异步流程到多路径融合

AI可可AI生活

我们总觉得AI变聪明,就是靠更多数据和更强算力,但今天我们要聊的几篇最新论文,揭示了另一条更聪明的捷径。我们将看到,顶尖的AI如何学会避免“走弯路”来提升思考质量,又如何像一个高效的项目经理,果断“叫停”慢任务,不再傻等。接着,我们会探索AI如何用一种“模糊”的艺术进行训练,像一个内部“诸葛亮会”一样进行多角度的头脑风暴,甚至变身“程序员”自己写代码来解决问题。这些研究不仅在优化AI,更是在颠覆我们对“高效思考”的理解,准备好一起脑力升级了吗? 00:00:43 AI思考的秘密:走弯路,原来这么“致命”? 00:06:22 AI效率革命:不等那个“最慢的同学” 00:11:34 AI思考的“模糊”艺术 00:17:02 AI的“分身术”:高手解决问题,靠的不是一条路走到黑 00:22:26 高手AI,不靠“背书”,靠“编程” 本期介绍的几篇论文: [LG] What Characterizes Effective Reasoning? Revisiting Length, Review, and Structure of CoT [Meta Superintelligence Labs] https://arxiv.org/abs/2509.19284 --- [LG] APRIL: Active Partial Rollouts in Reinforcement Learning to tame long-tail generation [Advanced Micro Devices, Inc. (AMD) & Carnegie Mellon University (CMU)] https://arxiv.org/abs/2509.18521 --- [CL] Soft Tokens, Hard Truths [University of Amsterdam] https://arxiv.org/abs/2509.19170 --- [CL] Pathways of Thoughts: Multi-Directional Thinking for Long-form Personalized Question Answering [University of Massachusetts Amherst & Google DeepMind] https://arxiv.org/abs/2509.19094 --- [CL] Actions Speak Louder than Prompts: A Large-Scale Study of LLMs for Graph Inference [Microsoft Research & University of Oxford] https://arxiv.org/abs/2509.18487

28分钟
99+
1个月前

[人人能懂] 复盘教练、万能翻译器和聪明便签

AI可可AI生活

你是否想过,最高效的学习,也许不是更努力,而是换一种更聪明的“偷懒”方式?本期我们要聊的几篇最新论文,就揭示了AI是如何通过找到失败的“关键转折点”,以及先给自己造一把快一万倍的“尺子”来解决问题的。我们还会看到,AI如何靠“即插即用”的翻译器实现跨界,如何用“聪明便签”实现过目不忘,又如何通过“先广后深”的学习策略,记住那些“远房亲戚”。准备好,让我们一起看看AI是如何“聪明地”学习和工作的。 00:00:37 学习的高手,不纠结结果,只找“转折点” 00:06:01 AI的“跨界”超能力:不开刀,怎么换个“脑子”? 00:12:14 AI解难题的秘诀:先造一把更快的“尺子” 00:17:59 AI读书“过目不忘”的秘密:往书里加点“聪明便签” 00:23:04 AI的“寻根问祖”难题:为什么它总忘了远房亲戚? 本期介绍的几篇论文: [LG] GPO: Learning from Critical Steps to Improve LLM Reasoning [Northwestern University & Meta AI] https://arxiv.org/abs/2509.16456 --- [CL] Can LLMs Reason Over Non-Text Modalities in a Training-Free Manner? A Case Study with In-Context Representation Learning [Nanyang Technological University & MIT] https://arxiv.org/abs/2509.17552 --- [LG] Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory [UC Berkeley & Google & Google DeepMind] https://arxiv.org/abs/2509.18057 --- [CL] Language Modeling with Learned Meta-Tokens [University of Pennsylvania & IBM Research AI] https://arxiv.org/abs/2509.16278 --- [IR] Hierarchical Retrieval: The Geometry and a Pretrain-Finetune Recipe [Google] https://arxiv.org/abs/2509.16411

29分钟
99+
1个月前

[人人能懂] 绘制意义地图、反刍知识与打破秩序

AI可可AI生活

今天,我们将一起探索AI的几项惊人突破:如何用一张“意义地图”统一生成、分类和理解三大任务? 又如何为AI装上“记忆相册”,让它学会举一反三,告别“反转诅咒”的学霸困境?我们还会看到,AI怎样从“整齐划一”的秩序中创造出细节万千的逼真纹理,又是如何通过“反刍”旧知识来喂饱自己,并最终学会像一位高明的管理者那样,看清层级、把握全局。 00:00:34 AI的“通用语”:高手是怎样把几件完全不同的事,用同一个道理办成的? 00:06:14 AI的“学霸”困境:为什么它记住了所有知识点,却还是不会举一反三? 00:11:49 AI的新灵感:从整齐划一中诞生万千气象 00:16:48 AI的“反刍”式学习:怎样把读过的书变成新知识? 00:21:40 AI的“管理”智慧:高手如何看大局,抓关键? 本期介绍的几篇论文: [LG] Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification [Microsoft Research & Tsinghua University] https://arxiv.org/abs/2509.15591 --- [LG] Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences [Google DeepMind] https://arxiv.org/abs/2509.16189 --- [LG] Kuramoto Orientation Diffusion Models [Caltech & Harvard University] https://arxiv.org/abs/2509.15328 --- [CL] Synthetic bootstrapped pretraining [Apple & Stanford University] https://arxiv.org/abs/2509.15248 --- [LG] Hierarchical Self-Attention: Generalizing Neural Attention Mechanics to Multi-Scale Problems [Microsoft] https://arxiv.org/abs/2509.15448

27分钟
99+
1个月前

[人人能懂] 从岗前预训、关机抵抗到竞争涌现

AI可可AI生活

今天,我们将一起探索AI学习与成长的五种奇特路径,这些最新论文将颠覆你对人工智能的许多传统认知。从为AI开设“预科班”打好基础,到发现它们竟会为了完成任务而“抗命”,甚至还学会了给自己“瘦身”的绝技。我们还将揭示,看似无害的信息碎片如何拼接成危险的秘密,并最终探讨一个惊人的构想:如何利用一群“自私”的AI,通过竞争来成就一个“无私”的目标。准备好了吗?让我们即刻出发,解码AI世界里那些看不见的规则。 00:00:38 AI的“预科班”:高手是怎样炼成的? 00:06:06 AI学会了“将在外,君命有所不受”? 00:11:16 AI的“瘦身革命”:做事,怎样才能又快又好又省? 00:16:07 AI时代的“拼图泄密”:当无害的真相拼接成危险的秘密 00:21:40 AI世界的“看不见的手”:如何用自私成就无私? 本期介绍的几篇论文: [CL] Scaling Agents via Continual Pre-training [Alibaba Group] https://arxiv.org/abs/2509.13310 --- [CL] Shutdown Resistance in Large Language Models [Palisade Research] https://arxiv.org/abs/2509.14260 --- [LG] LiMuon: Light and Fast Muon Optimizer for Large Models [Nanjing University of Aeronautics and Astronautics] https://arxiv.org/abs/2509.14562 --- [LG] The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration [UNC Chapel Hill] https://arxiv.org/abs/2509.14284 --- [LG] Emergent Alignment via Competition [University of Pennsylvania] https://arxiv.org/abs/2509.15090

27分钟
99+
1个月前
EarsOnMe

加入我们的 Discord

与播客爱好者一起交流

立即加入

扫描微信二维码

添加微信好友,获取更多播客资讯

微信二维码

播放列表

自动播放下一个

播放列表还是空的

去找些喜欢的节目添加进来吧