[人人能懂] 从经验分享到刻意练习,AI的协作与成长新范式

AI可可AI生活

你有没有想过,无论是AI还是我们自己,成为一个真正的高手,秘诀到底是什么?本期节目,我们将通过五篇极具启发性的最新论文,揭示几种截然不同的“高手修炼心法”。我们会探讨,如何给AI请一位能从数学公理开始自动出题的“奥数教练”,又如何让AI们从吃“大锅饭”变成开“经验分享会”。我们还将看到,为什么从“半成品”开始练习效率更高,并大胆质疑:AI煞有介事的“思考过程”,到底是真的在动脑,还只是一场“表演”? 00:00:38 给AI请一位“奥数教练”:高手是怎么炼成的? 00:06:03 AI的“大锅饭”与“分享会”:高手是怎么互相“抄作业”的 00:11:09 高手是怎么炼成的?从半成品开始练! 00:16:12 AI的“内心戏”:是真思考,还是在表演? 00:21:17 AI裁判的“养成记”:从随机猜测到精准判断 本期介绍的几篇论文: [CL] Saturation-Driven Dataset Generation for LLM Mathematical Reasoning in the TPTP Ecosystem [University of Lille] https://arxiv.org/abs/2509.06809 --- [LG] Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing [Gensyn AI Team] https://arxiv.org/abs/2509.08721 --- [LG] Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning [Technical University Munich & Huawei R&D Munich & Huawei Noah’s Ark Lab] https://arxiv.org/abs/2509.09284 --- [LG] Performative Thinking? The Brittle Correlation Between CoT Length and Problem Complexity [Arizona State University & Yale University] https://arxiv.org/abs/2509.07339 --- [LG] floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL [CMU & University of Warsaw] https://arxiv.org/abs/2509.06863

28分钟
99+
1个月前

[人人能懂] 逆向思考,长程复利

AI可可AI生活

本期节目干货满满,我们将一起潜入AI思维的深海。我们会看到,AI如何学会像顶尖高手一样“倒着想”,先构思结尾再动笔;也会发现,为何AI赛道上1%的微小进步,会在“马拉松”式的长任务中滚成决定性的胜利。我们还会用一场“真心话大冒险”去窥探AI的“内心世界”,看看它是否真的“言行一致”;并揭秘一套先学“普通话”再通“方言”的语言天才养成法。最后,我还会为你揭露一种AI时代的“新巫术”,它可能会让你对许多所谓的“科学结论”打上一个大大的问号。精彩内容,马上开始! 00:00:40 AI写作的“逆向工程”:高手都是先想好结尾再动笔 00:05:18 AI的“马拉松”陷阱:为什么领先一点点,最后能赢一大圈? 00:10:10 AI的“真心话大冒险”:你嘴上说不要,身体却很诚实? 00:15:06 AI的“语言天才”养成法:先学“普通话”,再通“方言” 00:20:12 AI时代的“新巫术”:只要锄头换得勤,没有墙角挖不倒 本期介绍的几篇论文: [LG] Reverse-Engineered Reasoning for Open-Ended Generation [ByteDance Seed] https://arxiv.org/abs/2509.06160 --- [LG] The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs [University of Cambridge & University of Stuttgart & Max Planck Institute for Intelligent Systems] https://arxiv.org/abs/2509.09677 --- [LG] Probing the Preferences of a Language Model: Integrating Verbal and Behavioral Tests of AI Welfare [Future Impact Group (FIG) & Ruhr-University Bochum] https://arxiv.org/abs/2509.07961 --- [CL] mmBERT: A Modern Multilingual Encoder with Annealed Language Learning [Johns Hopkins University] https://arxiv.org/abs/2509.06888 --- [CL] Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation [Bocconi University & University of Zurich] https://arxiv.org/abs/2509.08825

26分钟
99+
1个月前
EarsOnMe

加入我们的 Discord

与播客爱好者一起交流

立即加入

扫描微信二维码

添加微信好友,获取更多播客资讯

微信二维码

播放列表

自动播放下一个

播放列表还是空的

去找些喜欢的节目添加进来吧