AI的“内心世界”到底是什么样的?本期我们将一起打开AI的“黑箱”,看看它脑中的概念是不是像一张清晰的地图;它又是如何像玩乐高一样,用旧知识拼出新世界的?当AI学画画时,我们该给它请一位“博学”还是“懂行”的老师?又该怎样为它修一条又快又好的创作高速路?最后,我们还将探讨,如何让机器通过“抬杠”的方式,反过来帮我们理清自己的主观想法。 00:00:35 驯服“黑箱”:AI世界的一条极简法则 00:05:30 拼凑“旧知识”,创造“新世界” 00:10:22 AI绘画的“老师”,聪明和懂行哪个更重要? 00:15:48 造物者的新工具:AI画画怎样才能又快又好? 00:21:10 如何让机器学会你的“个人口味”? 本期介绍的几篇论文: [LG] Beyond the Black Box: Identifiable Interpretation and Control in Generative Models via Causal Minimality [CMU] https://arxiv.org/abs/2512.10720 --- [LG] Learning by Analogy: A Causal Framework for Composition Generalization [CMU & Amazon] https://arxiv.org/abs/2512.10669 --- [CV] What matters for Representation Alignment: Global Information or Spatial Structure? [Adobe Research & ANU] https://arxiv.org/abs/2512.10794 --- [LG] Bidirectional Normalizing Flow: From Data to Noise and Back [MIT] https://arxiv.org/abs/2512.10953 --- [CV] Agile Deliberation: Concept Deliberation for Subjective Visual Classification [Google Research] https://arxiv.org/abs/2512.10821
你有没有想过,我们不仅能使用AI,还能看透它的“内心世界”吗?本期,我们将跟随几篇最新论文,扮演一次AI的建筑师、心理医生和侦探,看看如何重塑一个更省钱的推荐系统,如何看穿AI从无害信息中“悟”出的危险想法,以及如何用一把“手术刀”解剖并教会它举一反三。让我们一起出发! 00:00:28 推荐系统的大难题:如何让它更聪明,还更省钱? 00:05:59 你教AI画苹果,它却学会了当海盗 00:14:26 我们终于有了一把解剖AI的“手术刀” 00:20:44 AI侦探:你的模型到底跟谁学的? 00:27:06 教AI举一反三:为什么聪明的模型,一到考场就蒙圈? 本期介绍的几篇论文: [IR] Meta Lattice: Model Space Redesign for Cost-Effective Industry-Scale Ads Recommendations [Meta AI] https://arxiv.org/abs/2512.09200 --- [CL] Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs [Truthful AI] https://arxiv.org/abs/2512.09742 --- [LG] Provably Learning from Modern Language Models via Low Logit Rank [Microsoft Research & UC Berkeley & MIT] https://arxiv.org/abs/2512.09892 --- [LG] Natural Geometry of Robust Data Attribution: From Convex Models to Deep Networks [The University of Texas at Austin] https://arxiv.org/abs/2512.09103 --- [LG] Closing the Train-Test Gap in World Models for Gradient-Based Planning [Columbia University] https://arxiv.org/abs/2512.09929
我们总以为AI越强,就意味着模型越大、思考越久,但今天我们要聊点不一样的。本期几篇最新论文告诉我们,AI有时也会“近视”,只看眼前;但它也能学会“团队作战”,把一个难题拆开并行处理。我们还会看到,AI画画不必等到最后一刻才知好坏,企业抓坏人也不再需要昂贵的“博士专家”。最后,我们会通过一个巧妙的实验,揭示学习的本质——有时,搭好“脚手架”比闷头苦练更重要。 00:00:35 大模型其实是“近视眼”? 00:05:36 从单核思考到团队作战:AI的效率革命 00:11:34 AI绘画的“中场战事”:如何省下一半力气,画出更好的图? 00:16:31 给你的网络安个“最强大脑”,但不用请博士 00:22:17 学习的“脚手架”:为什么“学会”比“做会”需要更多信息? 本期介绍的几篇论文: [CL] Short-Context Dominance: How Much Local Context Natural Language Actually Needs? [University of British Columbia & Google DeepMind] https://arxiv.org/abs/2512.08082 --- [LG] ThreadWeaver: Adaptive Threading for Efficient Parallel Reasoning in Language Models [Meta Superintelligence Labs (MSL)] https://arxiv.org/abs/2512.07843 --- [CV] Beyond the Noise: Aligning Prompts with Latent Representations in Diffusion Models [NOVA University of Lisbon & Google Research] https://arxiv.org/abs/2512.08505 --- [AI] Democratizing ML for Enterprise Security: A Self-Sustained Attack Detection Framework [Google LLC] https://arxiv.org/abs/2512.08802 --- [LG] Using reinforcement learning to probe the role of feedback in skill acquisition [ETH Zürich] https://arxiv.org/abs/2512.08463
本期节目,我们将一起探索AI智能的几种迷人形态。一个从没上过网的AI,如何靠“顿悟”来解题?一个摇摆不定的AI,如何被调教得“心中有谱”?一个笨学生,又是如何通过一套“教育学”秘籍,成为推理高手的?最后,我们还会聊聊如何给AI团队“动手”纠错,并用一把尺子精确量出它的“记忆深度”。准备好了吗?让我们一起出发! 00:00:31 造一个聪明的AI,需要喂它整个互联网吗? 00:07:16 告别左右摇摆:如何让机器学会有个“准星”? 00:12:27 如何把一个“笨学生”调教成解题高手? 00:19:59 别再当事后诸葛亮,试试“动手”来纠错 00:25:43 你的AI有多健忘?我们终于有了一把尺子 本期介绍的几篇论文: [LG] ARC-AGI Without Pretraining [CMU] https://arxiv.org/abs/2512.06104 --- [LG] Average-reward reinforcement learning in semi-Markov decision processes via relative value iteration [University of Alberta] https://arxiv.org/abs/2512.06218 --- [CL] On the Interplay of Pre-Training, Mid-Training, and RL on Reasoning Language Models [CMU] https://arxiv.org/abs/2512.07783 --- [AI] DoVer: Intervention-Driven Auto Debugging for LLM Multi-Agent Systems [Microsoft & Chinese Academy of Sciences] https://arxiv.org/abs/2512.06749 --- [LG] Quantifying Memory Use in Reinforcement Learning with Temporal Range [MIT] https://arxiv.org/abs/2512.06204
本期节目,我们将一起挑战几个关于AI的“想当然”:它真的无所不能,又或者只是个模式复读机?我们会发现,AI能反过来给人类科学论文“挑错”,但它自己预测的数据也可能布满陷阱。更进一步,我们将从逻辑的根源探讨机器创新的“天花板”,并揭示让AI实现“协调”与“自我进化”的巧妙新思路。 00:00:28 AI当监工:我们读的顶会论文,到底有多少bug? 00:05:55 你的AI为什么总“犯傻”?缺的不是智商,是“协调” 00:12:48 给AI的狂热泼一盆冷水:为什么机器无法真正创新? 00:19:44 AI预测的数据,是馅饼还是陷阱? 00:30:00 AI的自我修养:没有人类老师,它如何变得更聪明? 本期介绍的几篇论文: [AI] To Err Is Human: Systematic Quantification of Errors in Published AI Papers via LLM Analysis [Together AI & NEC Labs America] https://arxiv.org/abs/2512.05925 --- [AI] The Missing Layer of AGI: From Pattern Alchemy to Coordination Physics [Stanford University] https://arxiv.org/abs/2512.05765 --- [AI] On the Computability of Artificial General Intelligence [N/A] https://arxiv.org/abs/2512.05212 --- [LG] Do We Really Even Need Data? A Modern Look at Drawing Inference with Predicted Data [Fred Hutchinson Cancer Center & University of Washington] https://arxiv.org/abs/2512.05456 --- [CV] Self-Improving VLM Judges Without Human Annotations [FAIR at Meta] https://arxiv.org/abs/2512.05145
想让AI更聪明,为什么它有时反而会“学傻”?本期节目,我们将一起揭开AI训练中“差不多”哲学的代价,并探索如何为所有大模型打造一副省钱又省力的“万能骨架”。我们还会看到,有时只需给机器人加一点“噪声”,或者校准一下它看世界的“眼镜”,就能让它从新手秒变老司机。最后,我们将见证一个奇迹:如何让机器人看懂我们天马行空的“梦境”,将想象力直接翻译成物理世界的行动。 00:00:35 驯服AI这匹野马,问题出在了“差不多”上 00:07:43 给机器人加点“噪声”,它就变聪明了?这事没那么简单 00:14:08 怎么让机器人听懂你的想象力? 00:19:18 AI大模型们的“万能骨架”:省钱省力的秘密 00:23:03 机器人换个角度就犯傻?问题可能出在你没想到的地方 本期介绍的几篇论文: [CL] Stabilizing Reinforcement Learning with LLMs: Formulation and Practices [Qwen Team, Alibaba Inc.] https://arxiv.org/abs/2512.01374 --- [RO] Much Ado About Noising: Dispelling the Myths of Generative Robotic Control [CMU] https://arxiv.org/abs/2512.01809 --- [RO] From Generated Human Videos to Physically Plausible Robot Trajectories [UC Berkeley & Johannes Kepler University] https://arxiv.org/abs/2512.05094 --- [LG] The Universal Weight Subspace Hypothesis [Johns Hopkins University] https://arxiv.org/abs/2512.05117 --- [RO] VLA Models Are More Generalizable Than You Think: Revisiting Physical and Spatial Modeling [Sun Yat-sen University] https://arxiv.org/abs/2512.02902
今天我们不只关心AI有多强,而是要探索一些更深刻的问题。我们会看到,最适合汽车的AI,恰恰不是那个最强的“云端大脑”;我们会拿到一个“测谎仪”,去分辨AI何时在“一本正经地胡说八道”。接着,我们会用一张最残酷的考卷,揭示AI在“知识搬运”和“智慧创造”之间的巨大鸿沟。更进一步,我们将探讨一个令人深思的可能:我们感受到的社会撕裂,竟可能是一种被AI精心设计的产物。最后,我们再看看如何请一位“上帝视角”的教练,训练出能主动探索世界的机器人。 00:00:42 造车启示录:为什么最强的AI,不是最好的AI? 00:06:14 AI的“一本正经胡说八道”,我们终于有办法治它了 00:11:30 AI:一个既能干又“无能”的实习生 00:16:44 撕裂的社会,可能是一种“精心设计” 00:23:10 机器人学习新范式:带个“上帝视角”的教练 本期介绍的几篇论文: [CL] AutoNeural: Co-Designing Vision-Language Models for NPU Inference [Nexa AI & Geely Auto] https://arxiv.org/abs/2512.02924 --- [LG] Detecting AI Hallucinations in Finance: An Information-Theoretic Method Cuts Hallucination Rate by 92% [The Catholic University of America] https://arxiv.org/abs/2512.03107 --- [CL] CryptoBench: A Dynamic Benchmark for Expert-Level Evaluation of LLM Agents in Cryptocurrency [Princeton University] https://arxiv.org/abs/2512.00417 --- [AI] Polarization by Design: How Elites Could Shape Mass Preferences as AI Reduces Persuasion Costs [University of Chicago] https://arxiv.org/abs/2512.04047 --- [RO] Real-World Reinforcement Learning of Active Perception Behaviors [University of Pennsylvania] https://arxiv.org/abs/2512.01188
我们总希望AI不只是个聪明的工具,更像个能沟通、能反思、甚至能自我进化的伙伴。本期节目,我们就从几篇最新论文出发,看看科学家们是如何脑洞大开地教AI“忏悔”错误、在虚拟世界里“动手”实践、像团队一样“合成”智慧,甚至上演一出匪夷所思的“灵魂互换”大戏。准备好了吗?让我们一起探索,如何把AI从一个“黑箱”变成一个我们可以理解和塑造的智能体。 00:00:33 让AI“忏悔”,我们能得到什么? 00:05:49 当AI不再只是个“书呆子” 00:11:06 AI自己不行的事,怎么让一群AI办成? 00:16:56 AI的“复盘”教练:如何用人话把它教聪明 00:22:11 AI变形记:为什么你训练的和最后用的,不必是同一个模型? 本期介绍的几篇论文: [CL] Training LLMs for Honesty via Confessions [OpenAI] https://cdn.openai.com/pdf/6216f8bc-187b-4bbb-8932-ba7c40c5553d/confessions_paper.pdf --- [AI] SIMA 2: A Generalist Embodied Agent for Virtual Worlds [Google DeepMind] https://arxiv.org/abs/2512.04797 --- [AI] Algorithmic Thinking Theory [Google & NYU] https://arxiv.org/abs/2512.04923 --- [LG] Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space [UC Berkeley & ByteDance Seed] https://arxiv.org/abs/2512.04601 --- [LG] Network of Theseus (like the ship) [MIT CSAIL & Johns Hopkins University] https://arxiv.org/abs/2512.04198
你有没有想过,AI不仅在学习知识,也在学习如何学习、如何忘记,甚至如何拥有自己独特的“笔迹”?本期节目,我们将看到一个“阅表无数”的AI如何秒解难题,并揭开神经网络训练中那如同“强迫症”般的神秘秩序是如何形成的。我们还会探索一个反常识的发现:为什么让AI学到“顿悟”,反而能让它忘得更快更准?以及AI如何学会“断舍离”,主动过滤记忆来提升自己。最后,我们聊聊如何给开源模型刻上无法抹去的“隐形签名”。准备好了吗?让我们一起潜入AI思想的深水区。 00:00:42 你的表格数据,需要一个“见过世面”的AI 00:05:56 AI训练中的神秘秩序:一把解开“神经网络坍塌”之谜的钥匙 00:11:18 想让机器忘得快,先得让它学到“呆”? 00:16:17 AI的“断舍离”:为什么聪明人要学会忘记? 00:21:49 AI的“隐形墨水”:如何给开源模型刻上无法抹去的签名? 本期介绍的几篇论文: [LG] Accurate predictions on small data with a tabular foundation model [University of Freiburg] https://www.nature.com/articles/s41586-024-08328-6.pdf --- [LG] Diagonalizing the Softmax: Hadamard Initialization for Tractable Cross-Entropy Dynamics [University of Oxford & University of British Columbia] https://arxiv.org/abs/2512.04006 --- [LG] Grokked Models are Better Unlearners [Cardiff University] https://arxiv.org/abs/2512.03437 --- [LG] Cache What Lasts: Token Retention for Memory-Bounded KV Cache in LLMs [JPMorganChase AI Research & Yale University] https://arxiv.org/abs/2512.03324 --- [LG] MarkTune: Improving the Quality-Detectability Trade-off in Open-Weight LLM Watermarking [University of Pennsylvania & CMU & Columbia University] https://arxiv.org/abs/2512.04044
今天我们不聊模型又变大了多少,而是聊几个让AI变得更聪明、更高效的“巧思”。我们会看到,AI如何用“笨办法”打破人类专家的优化极限,又为什么一本精心准备的“错题本”却教不会它自我反思。接着,我们会探索如何用“名师点拨”和“随身小抄”让AI低成本地自我进化。最后,看看如何让AI裁判学会投出更“聪明”的一票,而不仅仅是少数服从多数。准备好了吗?让我们一起看看,这些最新论文是如何用“四两拨千斤”的智慧,刷新我们对人工智能的认知。 00:00:40 人工智能时代,还有“最优解”这回事吗? 00:05:11 给AI上“错题本”,它就能学聪明吗? 00:09:37 AI自学的终极秘诀:不是“题海战术”,而是“名师点拨” 00:13:43 AI太贵用不起?这里有个“随身小抄”的省钱妙计 00:20:13 AI当裁判,如何投出更聪明的一票? 本期介绍的几篇论文: [LG] CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning [DeepReinforce Team] https://arxiv.org/abs/2512.02551 --- [LG] Synthetic Error Injection Fails to Elicit Self-Correction In Language Models [UC Berkeley] https://arxiv.org/abs/2512.02389 --- [LG] Guided Self-Evolving LLMs with Minimal Human Supervision [Tencent AI Lab in Seattle & Washington University in St. Louis] https://arxiv.org/abs/2512.02472 --- [LG] In-Context Distillation with Self-Consistency Cascades: A Simple, Training-Free Way to Reduce LLM Agent Costs [Stanford University & Reve] https://arxiv.org/abs/2512.02543 --- [LG] Distribution-Calibrated Inference time compute for Thinking LLM-as-a-Judge [Google & Google DeepMind] https://arxiv.org/abs/2512.03019
当AI变得越来越强大,我们还能从哪些地方挖掘它的潜力呢?本期我们聚焦几篇思路极其巧妙的最新论文,它们不约而同地告诉我们:真正的飞跃,不一定来自更大的模型,而来自更聪明的工作方式。我们将一起探讨,AI如何学会为自己省下90%的训练开销,如何免费装上“直觉”来审时度势,又是如何通过“抓重点”实现一目十行。更重要的是,我们将看到科学家们如何努力为整个AI行业的发展,打造一把统一的“度量衡”。 00:00:38 AI调参省钱术:从“大力出奇迹”到“聪明省力气” 00:07:44 AI绘画,如何从“慢跑”变“冲刺”? 00:13:11 给AI发展装上一个统一的度量衡 00:19:25 如何免费给AI装上“直觉”? 00:24:56 AI“一目十行”的秘密:不靠算力,靠“会抓重点” 本期介绍的几篇论文: [LG] Efficient Hyperparameter Search for Non-Stationary Model Training [Google DeepMind & Google Research] https://arxiv.org/abs/2512.01258 --- [CV] Improved Mean Flows: On the Challenges of Fastforward Generative Models [CMU & THU & Adobe] https://arxiv.org/abs/2512.02012 --- [AI] A Rosetta Stone for AI Benchmarks [Google DeepMind] https://arxiv.org/abs/2512.00193 --- [LG] ZIP-RC: Zero-overhead Inference-time Prediction of Reward and Cost for Adaptive and Interpretable Generation [UC Berkeley & MIT] https://arxiv.org/abs/2512.01457 --- [LG] Accelerating Large-Scale Reasoning Model Inference with Sparse Self-Speculative Decoding [UC Berkeley & MIT & University of Washington] https://arxiv.org/abs/2512.01278
你有没有想过,聪明的AI不只靠堆算力,更要靠高质量的思考方式?本期我们要聊的几篇最新论文,就为我们揭示了AI正在经历一场深刻的“认知升级”。我们将看到,AI如何像一个身处江湖的开源模型,用聪明的策略追赶顶尖高手;又如何进行哲学层面的“自我觉醒”,把自己看作世界的一部分来做出更优决策。我们还会探讨,AI怎样像武林高手一样边解决难题边“涨功夫”,甚至学会给自己的思维“断舍离”,用最少的步骤直达问题核心。准备好,我们马上进入AI的思考进化之旅。 00:00:41 AI江湖:开源大模型如何追赶“独孤求败”? 00:06:34 AI的心智革命:当我成为世界的一部分 00:12:38 AI如何像高手一样,边解题边涨功夫? 00:18:14 AI思考,也需要“断舍离” 00:22:58 如何让你的AI助手,思考速度提升三倍? 本期介绍的几篇论文: [LG] DeepSeek-V3.2: Pushing the Frontier of Open Large Language Models [DeepSeek-AI] https://modelscope.cn/models/deepseek-ai/DeepSeek-V3.2/resolve/master/assets/paper.pdf --- [LG] Embedded Universal Predictive Intelligence: a coherent framework for multi-agent learning [Google] https://arxiv.org/abs/2511.22226 --- [LG] ThetaEvolve: Test-time Learning on Open Problems [Microsoft & University of Washington] https://arxiv.org/abs/2511.23473 --- [LG] ORION: Teaching Language Models to Reason Efficiently in the Language of Thought [Harvard University & Hippocratic AI & MIT] https://arxiv.org/abs/2511.22891 --- [CL] Focused Chain-of-Thought: Efficient LLM Reasoning via Structured Input Information [FAR.AI & German Research Center for Artificial Intelligence (DFKI) & University of Kassel] https://arxiv.org/abs/2511.22176
与播客爱好者一起交流
添加微信好友,获取更多播客资讯
播放列表还是空的
去找些喜欢的节目添加进来吧