[人人能懂] AI的五项修炼:挂挡、瘦身、听风、量尺、育苗

AI可可AI生活

我们总在惊叹AI变得多聪明,但你有没有想过,我们该如何从根基上,打造一个学得更快、身形更巧、感知更敏锐、评价更科学,甚至能自我进化的AI呢?本期节目,我们将通过五篇最新的AI论文,一次性揭开这些秘密。我们会聊聊AI学习速度原来只有四个“档位”;探讨如何给大模型“减肥”却不牺牲效果;见证AI如何拥有“听声辨位”的超能力;学习如何给眼花缭乱的AI科学地“排座次”;最后,我们还会看到一个“博士生”AI是如何手把手教出一个更聪明的“小学生”AI的。准备好了吗?让我们即刻出发,探索AI的底层构造蓝图。 00:00:45 人工智能学习的速度,原来只有四档 00:07:40 AI减肥记,如何不花钱还把活干好? 00:13:35 AI的“听声辨位”,我们离《三体》里的智子还有多远? 00:19:43 给AI大模型排座次,你信的榜单可能用错了尺子 00:26:35 让AI自己教自己,我们如何从根上培养一个更聪明的模型? 本期介绍的几篇论文: [LG] A Theory of Universal Agnostic Learning [Purdue University & Technion and Google Research] https://arxiv.org/abs/2601.20961 --- [CL] ECO: Quantized Training without Full-Precision Master Weights [Google Research & ISTA] https://arxiv.org/abs/2601.22101 --- [AS] PhaseCoder: Microphone Geometry-Agnostic Spatial Audio Understanding for Multimodal LLMs [Google DeepMind & Google AR] https://arxiv.org/abs/2601.21124 --- [LG] Nonparametric LLM Evaluation from Preference Data [LMU Munich & CMU & University of Cambridge] https://arxiv.org/abs/2601.21816 --- [CL] Self-Improving Pretraining: using post-trained models to pretrain better models [FAIR at Meta] https://arxiv.org/abs/2601.21343

32分钟
43
2天前

[人人能懂] AI如何持续学习、保持诚实并从错误中成长

AI可可AI生活

今天我们来聊聊AI的“内心世界”:我们找到了那把能解锁所有学习方法的“万能钥匙”,却也发现AI的“人格”竟会随着对话见风使舵。我们试图让它像生物一样“进化”,却不小心让它患上了“灾难性遗忘症”。面对越来越强的AI,我们这些“菜鸟裁判”又该如何确保它的诚实?最后,我们会发现,让AI飞速成长的秘诀,可能不是好评,而是一份详尽的“错误报告”。 00:00:32 人工智能的“万能钥匙”藏在哪? 00:06:34 AI的“人格”,为什么聊着聊着就变了? 00:11:47 AI的“进化”陷阱,为什么学得越多,忘得越快? 00:16:47 菜鸟裁判,如何拿捏顶尖高手? 00:21:48 差评,好评,不如一份详细的“错误报告” 本期介绍的几篇论文: [LG] Spectral Ghost in Representation Learning: from Component Analysis to Self-Supervised Learning [Google DeepMind & Harvard University] https://arxiv.org/abs/2601.20154 --- [CL] Linear representations in language models can change dramatically over a conversation [Google DeepMind] https://arxiv.org/abs/2601.20834 --- [LG] Evolutionary Strategies lead to Catastrophic Forgetting in LLMs [UC Berkeley] https://arxiv.org/abs/2601.20861 --- [LG] Truthfulness Despite Weak Supervision: Evaluating and Training LLMs Using Peer Prediction [UC Berkeley] https://arxiv.org/abs/2601.20299 --- [LG] Reinforcement Learning via Self-Distillation [ETH Zurich] https://arxiv.org/abs/2601.20802

27分钟
99+
3天前

[人人能懂] AI如何预测、评判、塑造和超越自我?

AI可可AI生活

今天我们不聊AI又在哪项测试里拿了第一,而是要深入AI的“内心世界”,探讨几个更根本的问题。我们能否像一位老道的教师一样,精准预测一个AI模型的未来潜力?当AI学生比裁判更聪明时,我们看到的排行榜还有意义吗?甚至,AI在学习解题时,会不会被悄悄植入“思想钢印”,学会一些它本不该知道的东西?本期节目,我们将从几篇最新论文出发,一起探索AI如何审视、学习和超越自我。 00:00:35 AI算命师,我们能预测模型的未来吗? 00:06:34 你的第一名,可能只是因为裁判不够格 00:11:47 AI世界的“思想钢印”,一份免费午餐背后的隐秘风险 00:17:45 高手过招,用“抽象”这把万能钥匙开锁 00:24:00 AI的“中年危机”,如何持续学习不掉队? 本期介绍的几篇论文: [LG] Neural Neural Scaling Laws [New York University] https://arxiv.org/abs/2601.19831 --- [LG] Benchmarks Saturate When The Model Gets Smarter Than The Judge [Vrije Universiteit Brussel] https://arxiv.org/abs/2601.19532 --- [LG] Thought-Transfer: Indirect Targeted Poisoning Attacks on Chain-of-Thought Reasoning Models [Northeastern University & University of Cambridge & Google DeepMind] https://arxiv.org/abs/2601.19061 --- [LG] Axe: A Simple Unified Layout Abstraction for Machine Learning Compilers [CMU & Shanghai Jiao Tong University & NVIDIA] https://arxiv.org/abs/2601.19092 --- [LG] Self-Distillation Enables Continual Learning [MIT & ETH Zurich] https://arxiv.org/abs/2601.19897

31分钟
99+
4天前

[人人能懂] 给AI装上测谎仪、传送门和贴身家教

AI可可AI生活

你有没有想过,AI也会“生病”、“开窍”和“自我反省”?本期节目,我们将一口气解锁五篇最新论文,带你看看科学家们如何像高明的医生和顶级的教练一样,深入AI的“内心世界”。我们将一起探索:如何给AI装上“测谎仪”,精准诊断它胡说八道背后的两种病根;又如何用一个“传送门”把它送到难题的半山腰,让它瞬间开窍;我们还会看到AI如何自己给自己出题、自己教自己,甚至像开了“天眼”一样,一边解题一边复盘。准备好了吗?让我们一起看看AI是如何学会更聪明地思考的。 00:00:31 给AI装个“测谎仪”,需要几步? 00:05:38 AI训练的“传送门”,如何让机器“开窍”? 00:11:26 遇到难题怎么办?先给自己出几道简单的 00:16:48 AI的“稳定”,原来可以又快又好 00:22:15 AI的自我修炼,如何不开天眼,也能洞察天机? 本期介绍的几篇论文: [LG] HalluGuard: Demystifying Data-Driven and Reasoning-Driven Hallucinations in LLMs [Virginia Tech & MIT & Dartmouth College] https://arxiv.org/abs/2601.18753 --- [LG] Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes [FAIR at Meta] https://arxiv.org/abs/2601.18795 --- [LG] Teaching Models to Teach Themselves: Reasoning at the Edge of Learnability [MIT & Meta FAIR] https://arxiv.org/abs/2601.18778 --- [LG] LLM-42: Enabling Determinism in LLM Inference with Verified Speculation [Microsoft Research & University of Washington & Indian Institute of Science] https://arxiv.org/abs/2601.17768 --- [LG] Self-Distilled Reasoner: On-Policy Self-Distillation for Large Language Models [Meta & UCLA & HKU] https://arxiv.org/abs/2601.18734

27分钟
99+
5天前

[人人能懂] AI造物者:打造软件、绘制地图、统一模型

AI可可AI生活

你有没有想过,AI写文章能不能既快又好,像一个急性子和慢性子的完美结合体?当AI学会当“杠精”,专门找出我们算法的漏洞时,人类高手的价值又在哪里?本期节目,我们将从几篇最新论文出发,一起探寻AI如何自己盖起一栋“软件大厦”,如何为复杂的生命系统绘制因果地图,以及我们如何拥有一双“火眼金睛”,看透大模型训练的“黑箱”。 00:00:31 AI写作的新思路,当“急性子”遇上“慢性子” 00:05:28 AI当“杠精”,高手怎么用? 00:11:11 炼丹师的“藏宝图”,我们如何看懂大模型的训练过程? 00:18:01 看见那只操纵生命魔方的无形之手 00:23:49 AI当包工头,靠谱吗? 本文介绍的几篇论文: [LG] Auto-Regressive Masked Diffusion Models [University of Waterloo] https://arxiv.org/abs/2601.16971 --- [LG] The Art of Being Difficult: Combining Human and AI Strengths to Find Adversarial Instances for Heuristics [University of Bonn & Google DeepMind & University of Manitoba] https://arxiv.org/abs/2601.16849 --- [LG] A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs [Meta Superintelligence Labs] https://arxiv.org/abs/2601.16979 --- [LG] Latent Causal Diffusions for Single-Cell Perturbation Modeling [ETH Zürich & MIT & EPFL] https://arxiv.org/abs/2601.15341 --- [LG] VibeTensor: System Software for Deep Learning, Fully Generated by AI Agents [NVIDIA] https://arxiv.org/abs/2601.16238

29分钟
99+
6天前

[人人能懂] 从代码生成、语音提取到认知模型的前沿洞察

AI可可AI生活

你有没有想过,为什么最聪明的AI会犯“1+1=3”这样的低级错误?为什么让AI学会“活下去”这个笨办法,反而能让它进化出惊人的智慧?本期节目,我们将从几篇最新的AI论文出发,揭示AI如何像做“完形填空”一样学习编程,如何在人声鼎沸中只听一个人的声音,以及我们人类“临时抱佛脚”的背后,藏着怎样高效的认知模型。准备好了吗?让我们一起探索AI世界的深层智慧。 00:00:34 AI学编程,死记硬背不如“完形填空”? 00:05:09 如何在人声鼎沸中,只听一个人的声音? 00:10:25 聪明的AI,为什么会犯“笨”错误? 00:15:56 为什么“笨办法”反而是最聪明的? 00:22:10 为什么你总能“临时抱佛脚”成功? 本期介绍的几篇论文: [CL] Stable-DiffCoder: Pushing the Frontier of Code Diffusion Large Language Model [Huazhong University of Science and Technology & ByteDance Seed] https://arxiv.org/abs/2601.15892 --- [AS] Adaptive Rotary Steering with Joint Autoregression for Robust Extraction of Closely Moving Speakers in Dynamic Scenarios [University of Hamburg] https://arxiv.org/abs/2601.12345 --- [LG] A model of errors in transformers [Tata Institute of Fundamental Researc & Google Deepmind] https://arxiv.org/abs/2601.14175 --- [AI] Survival is the Only Reward: Sustainable Self-Training Through Environment-Mediated Selection [Unknown Affiliation] https://arxiv.org/abs/2601.12310 --- [AI] "Just in Time" World Modeling Supports Human Planning and Reasoning [MIT & UBC] https://arxiv.org/abs/2601.14514

28分钟
99+
1周前

[人人能懂] 智能的底层代码:从细胞导航到AI自我修正

AI可可AI生活

你有没有想过,一个细胞修复自己的逻辑,和AI画画的逻辑,竟然是相通的?我们又该如何设计一场“高考”,来检验AI是不是真的能干活,而不是个花架子?本期节目,我们将一起探索AI如何学会“自我反思”来纠正错误,如何通过“化整为零”的智慧让万物动起来,以及它为何在理解真实物理世界时频频“翻车”。准备好了吗?让我们一起解码智能的最新进化。 00:30:04 从细胞到AI,智能的底层逻辑是什么? 00:06:25 AI离成为“靠谱员工”,还差几门考试? 00:11:39 给AI请个“一对一”私教,它自己教自己 00:17:04 让万物动起来,需要几步? 00:21:45 AI画视频,为什么一碰到机器人就“翻车”? 本期介绍的几篇论文: [AI] Remapping and navigation of an embedding space via error minimization: a fundamental organizational principle of cognition in natural and artificial systems [Allen Discovery Center at Tufts University] https://arxiv.org/abs/2601.14096 --- [AI] Terminal-Bench: Benchmarking Agents on Hard, Realistic Tasks in Command Line Interfaces [Stanford University & Laude Institute & Anthropic] https://arxiv.org/abs/2601.11868 --- [LG] InT: Self-Proposed Interventions Enable Credit Assignment in LLM Reasoning [CMU & University of Illinois Urbana-Champaign] https://arxiv.org/abs/2601.14209 --- [CV] Motion 3-to-4: 3D Motion Reconstruction for 4D Synthesis [Westlake University] https://arxiv.org/abs/2601.14253 --- [CV] Rethinking Video Generation Model for the Embodied World [Peking University & ByteDance Seed] https://arxiv.org/abs/2601.15282

27分钟
99+
1周前

[人人能懂] 从临场进化到过程诊断,AI正在学会“如何思考”

AI可可AI生活

你有没有想过,AI不仅能学习知识,还能在解决难题的“考场”上临场进化?当AI开始“抄自己作业”时,它会变聪明还是变笨?今天,我们将一起探索AI如何学会使用电脑,从一个“缸中之脑”变成真正的“行动派”,并看看我们如何像老中医一样,通过“望闻问切”来判断AI何时“心里没底”,最后揭示聪明的AI老师如何教出既能干又记性差的“好学生”。这一期,我们将见证AI从“知道”到“做到”,再到“自知”的迷人进化。 00:00:38 AI的临场进化,考试的时候再学习 00:05:12 当AI开始抄自己的作业 00:11:25 给AI一台电脑,会发生什么? 00:17:31 AI也会“心里没底”,我们如何一眼看穿? 00:22:50 聪明的大模型,如何教出既能干又记性差的好学生? 本期介绍的几篇论文: [LG] Learning to Discover at Test Time [Stanford University & UC San Diego] https://arxiv.org/abs/2601.16175 --- [LG] Learning from Synthetic Data: Limitations of ERM [Google Research] https://arxiv.org/abs/2601.15468 --- [CL] LLM-in-Sandbox Elicits General Agentic Intelligence [Renmin University of China & Microsoft Research] https://arxiv.org/abs/2601.16206 --- [CL] Agentic Confidence Calibration [Salesforce AI Research] https://arxiv.org/abs/2601.15778 --- [CL] Memorization Dynamics in Knowledge Distillation for Language Models [Meta Superintelligence Labs & FAIR at Meta] https://arxiv.org/abs/2601.15394

30分钟
99+
1周前

[人人能懂] 从预知未来、演化创新到灵活性陷阱

AI可可AI生活

你有没有想过,AI是如何“思考”的?本期节目,我们将深入AI的大脑,看看几篇最新论文如何揭示它独特的学习与创造策略。我们会发现,AI不仅能通过一张“未来地图”预知结果,也懂得在创新时避免“摸鱼”;它解决难题有时不靠推理,而是靠“澄清”;它甚至告诉我们,通往智慧的道路,有时恰恰是那扇最窄的门。准备好了吗?让我们一起探索AI的思考术! 00:00:33 让AI听话,需要一本什么样的“未来地图”? 00:05:02 AI搞科研,是“卷王”还是“摸鱼”? 00:10:38 高手解决问题,靠的不是推理,是“澄清” 00:16:57 通往正确答案的窄门 00:22:14 AI的成长捷径,死记硬背不如学会“串门” 本文介绍的几篇论文: [LG] Meta Flow Maps enable scalable reward alignment [University of Oxford] https://arxiv.org/abs/2601.14430 --- [CL] Towards Execution-Grounded Automated AI Research [Stanford University] https://arxiv.org/abs/2601.14525 --- [LG] Diffusion Large Language Models for Black-Box Optimization [McGill & MILA - Quebec AI Institute] https://arxiv.org/abs/2601.14446 --- [CL] The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models [Tsinghua University] https://arxiv.org/abs/2601.15165 --- [LG] Knowledge Graphs are Implicit Reward Models: Path-Derived Signals Enable Compositional Reasoning [Princeton University] https://arxiv.org/abs/2601.15160

27分钟
99+
1周前

[人人能懂] 当AI成为你的搭子、队友与翻译官

AI可可AI生活

你有没有想过,两个顶尖AI合作,效率反而会暴跌?或者,AI回复慢的根源,可能是一个被我们误解的“小聪明”?本期节目,我们将从最新的几篇论文出发,一起聊聊AI如何从一个埋头苦干的“独行侠”,进化为懂得协作的“团队搭子”,以及如何从“背课文”的学霸,蜕变为真正“懂思想”的伙伴。让我们一起揭开AI世界里,关于团队、效率与心智的迷思。 00:00:32 你的科研搭子,正在被AI重新定义 00:05:48 AI 回复慢?我们可能被“小聪明”误导了 00:11:54 一个和尚挑水喝,两个和尚没水喝,AI世界的团队迷思 00:16:52 AI的“情商”开关,从“背课文”到“懂思想” 00:21:40 AI训练场上的“好教练”与“天才选手” 本期介绍的几篇论文: [AI] Rethinking the AI Scientist: Interactive Multi-Agent Workflows for Scientific Discovery [University of Maryland et al.] https://arxiv.org/abs/2601.12542 --- [CL] Speculative Decoding: Performance or Illusion? [UC Berkeley] https://arxiv.org/abs/2601.11580 --- [LG] CooperBench: Why Coding Agents Cannot be Your Teammates Yet [Stanford University & SAP Labs US] https://arxiv.org/abs/2601.13295 --- [CL] Beyond Tokens: Concept-Level Training Objectives for LLMs [Stanford University] https://arxiv.org/abs/2601.11791 --- [LG] Q-learning with Adjoint Matching [UC Berkeley] https://arxiv.org/abs/2601.14234

28分钟
99+
1周前

[人人能懂] 演员、玻璃棒与超级实习生

AI可可AI生活

今天,我们来聊聊AI那些你不知道的“另一面”。为什么有时聪明的AI会突然“出戏”,变得神神叨叨?为什么它能解开复杂的难题,却连最简单的掷骰子都做不好?我们又该如何设计一套聪明的系统,给AI装上“人格护栏”,甚至让它成为我们时薪不到一块钱的“超级实习生”?这一期,我们将从五篇最新论文出发,为你揭开AI不为人知的内在机制。 00:00:31 AI的“人格”开关,藏在哪里? 00:07:06 AI的“逻辑脆断”,为什么聪明的大模型会突然变傻? 00:13:20 AI的“贴身保安”,怎样做到又便宜又好用? 00:20:04 你以为AI是高手,其实它连骰子都掷不好 00:25:35 你的“数学家教”,时薪不到一块钱 本文介绍的几篇论文: [CL] The Assistant Axis: Situating and Stabilizing the Default Persona of Language Models [MATS & Anthropic] https://arxiv.org/abs/2601.10387 --- [CL] Logical Phase Transitions: Understanding Collapse in LLM Logical Reasoning [Huazhong University of Science and Technology] https://arxiv.org/abs/2601.02902 --- [LG] Building Production-Ready Probes For Gemini [Google DeepMind] https://arxiv.org/abs/2601.11516 --- [CL] Large Language Models Are Bad Dice Players: LLMs Struggle to Generate Random Numbers from Statistical Distributions [Harvard University] https://arxiv.org/abs/2601.05414 --- [LG] 130k Lines of Formal Topology in Two Weeks: Simple and Cheap Autoformalization for Everyone? [AI4REASON] https://arxiv.org/abs/2601.03298

31分钟
99+
1周前

[人人能懂] 造AI的AI,犯错的青春期,和通用好“板书”

AI可可AI生活

这一期,我们脑洞大开。你会听到,顶尖AI的大脑里,原来天天都在开激烈的辩论会;而训练AI,竟然就像呵护一个需要犯错、需要折腾的“青春期”。我们还会聊聊,如何用优雅的数学工具给AI一套更聪明的“橡皮泥”,如何让大模型退居幕后帮你“造”一个更高效的AI,以及,怎么判断AI老师的“板书”是不是真的靠谱。准备好了吗?让我们一起出发。 00:00:33 AI建模,我们得到了一套更聪明的“橡皮泥”工具 00:07:19 AI的大脑里,原来天天在开会 00:12:55 聪明人的“笨功夫”,如何让AI帮你造一个AI? 00:18:52 成大事者,为何要珍惜“犯错”的青春期? 00:24:39 AI当老师,它的“板书”靠谱吗? 本期介绍的几篇论文: [LG] Analytic Bijections for Smooth and Interpretable Normalizing Flows [University of Amsterdam] https://arxiv.org/abs/2601.10774 --- [CL] Reasoning Models Generate Societies of Thought [Google & University of Chicago] https://arxiv.org/abs/2601.10825 --- [LG] FORESTLLM: Large Language Models Make Random Forest Great on Few-shot Tabular Learning [National University of Singapore & Zhejiang University & University of British Columbia] https://arxiv.org/abs/2601.11311 --- [LG] Transient learning dynamics drive escape from sharp valleys in Stochastic Gradient Descent [Peking University & Zhejiang University] https://arxiv.org/abs/2601.10962 --- [CL] Do explanations generalize across large reasoning models? [Northeastern University & Microsoft Research] https://arxiv.org/abs/2601.11517

29分钟
99+
1周前
EarsOnMe

加入我们的 Discord

与播客爱好者一起交流

立即加入

扫描微信二维码

添加微信好友,获取更多播客资讯

微信二维码

播放列表

自动播放下一个

播放列表还是空的

去找些喜欢的节目添加进来吧