Album
时长:
7分钟
播放:
106
发布:
3周前
主播...
简介...
https://xiaoyuzhoufm.com
本期的 15 篇论文如下:
[00:18] 🧠 ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability(ReasonRank:赋予段落排序强大推理能力)
[00:41] 🔍 WideSearch: Benchmarking Agentic Broad Info-Seeking(WideSearch:智能体广域信息搜寻基准测试)
[01:01] ✨ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation(Omni-Effects:统一且空间可控的视觉效果生成)
[01:26] 🧠 Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization(Klear-Reasoner:通过梯度保留剪裁策略优化提升推理能力)
[01:59] 💬 UserBench: An Interactive Gym Environment for User-Centric Agents(UserBench:面向用户中心智能体的交互式Gym基准环境)
[02:22] 💡 SONAR-LLM: Autoregressive Transformer that Thinks in Sentence Embeddings and Speaks in Tokens(SONAR-LLM:以句子嵌入思考并以Token表达的自回归Transformer)
[02:50] 🌱 A Comprehensive Survey of Self-Evolving AI Agents: A New Paradigm Bridging Foundation Models and Lifelong Agentic Systems(自进化AI智能体综合综述:连接基础模型与终身智能体系统的新范式)
[03:15] 🔬 BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent(BrowseComp-Plus:一种更公平透明的深度研究智能体评估基准)
[03:45] 🤖 MolmoAct: Action Reasoning Models that can Reason in Space(MolmoAct:可进行空间推理的动作推理模型)
[04:11] 🤖 OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks(OmniEAR:具身任务中智能体推理的基准测试)
[04:38] 💡 Grove MoE: Towards Efficient and Superior MoE LLMs with Adjugate Experts(Grove MoE:面向高效卓越的伴随专家MoE大语言模型)
[05:05] ⏳ Temporal Self-Rewarding Language Models: Decoupling Chosen-Rejected via Past-Future(时序自奖励语言模型:通过过去-未来解耦选择与拒绝)
[05:29] 🗺 Reinforcement Learning in Vision: A Survey(视觉强化学习:综述)
[05:59] 🔍 Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning(第一部分:技巧还是陷阱?深入探究强化学习在大型语言模型推理中的应用)
[06:23] 🖌 Follow-Your-Shape: Shape-Aware Image Editing via Trajectory-Guided Region Control(随形而动:轨迹引导区域控制的形状感知图像编辑)
【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递
评价...

空空如也

小宇宙热门评论...

暂无小宇宙热门评论

EarsOnMe

加入我们的 Discord

与播客爱好者一起交流

立即加入

扫描微信二维码

添加微信好友,获取更多播客资讯

微信二维码

播放列表

自动播放下一个

播放列表还是空的

去找些喜欢的节目添加进来吧