本期的 20 篇论文如下:
[00:23] 📚 SurveyX: Academic Survey Automation via Large Language Models(基于大型语言模型的学术调查自动化)
[01:10] 🔍 LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers(LLM显微镜:揭示标点符号在Transformer上下文记忆中的隐藏作用)
[01:50] 🚗 MaskGWM: A Generalizable Driving World Model with Video Mask Reconstruction(MaskGWM:结合视频掩码重建的通用驾驶世界模型)
[02:28] 🧬 Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model(Mol-LLaMA:面向大分子语言模型的分子通用理解)
[03:12] 🎨 PhotoDoodle: Learning Artistic Image Editing from Few-Shot Pairwise Data(PhotoDoodle:从少量成对数据中学习艺术图像编辑)
[03:55] 🔗 VLM$^2$-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues(VLM²-Bench:深入探究视觉语言模型在显式匹配视觉线索上的隐式链接能力)
[04:42] 📌 SIFT: Grounding LLM Reasoning in Contexts via Stickers(SIFT:通过贴纸将大语言模型的推理扎根于上下文中)
[05:27] 🧠 LightThinker: Thinking Step-by-Step Compression(光思者:逐步压缩推理)
[05:59] 🗂 StructFlowBench: A Structured Flow Benchmark for Multi-turn Instruction Following(结构流基准:多轮指令跟随的结构流评估)
[06:48] 🛡 Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models(安全标准对所有人都一样吗?大型语言模型的用户特定安全评估)
[07:40] 📚 KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding(KITAB-Bench:阿拉伯语OCR与文档理解的综合多领域基准)
[08:30] 🧬 ReQFlow: Rectified Quaternion Flow for Efficient and High-Quality Protein Backbone Generation(ReQFlow:用于高效高质量蛋白质骨架生成的校正四元数流)
[09:11] 🧠 MoBA: Mixture of Block Attention for Long-Context LLMs(MoBA:块注意力混合模型用于长上下文LLMs)
[09:49] 🤖 InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback(InterFeedback:通过人类反馈揭示大型多模态模型的交互智能)
[10:37] 🧠 The Relationship Between Reasoning and Performance in Large Language Models -- o3 (mini) Thinks Harder, Not Longer(大语言模型中推理与性能的关系——o3(mini)通过更努力而非更长时间进行推理)
[11:20] 📚 Evaluating Multimodal Generative AI with Korean Educational Standards(评估多模态生成式人工智能与韩国教育标准)
[11:54] ⚠ Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?(超级智能体带来灾难性风险:科学家AI能否提供更安全的路径?)
[12:29] ⚡ One-step Diffusion Models with $f$-Divergence Distribution Matching(基于$f$-散度分布匹配的一步扩散模型)
[13:09] 🧠 Think Inside the JSON: Reinforcement Strategy for Strict LLM Schema Adherence(在JSON内部思考:强化策略实现严格LLM模式遵循)
[13:52] 🧠 MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models(MedHallu:检测大型语言模型中的医学幻觉的综合基准)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递

空空如也
暂无小宇宙热门评论