本期的 18 篇论文如下:
[00:23] 🧠 RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation(RetroLLM:赋能大型语言模型在生成过程中检索细粒度证据)
[01:05] ⚡ Evaluation Agent: Efficient and Promptable Evaluation Framework for Visual Generative Models(评估代理:高效且可提示的视觉生成模型评估框架)
[01:45] 🎨 BrushEdit: All-In-One Image Inpainting and Editing(BrushEdit:一站式图像修复与编辑)
[02:27] 🎨 ColorFlow: Retrieval-Augmented Image Sequence Colorization(ColorFlow:检索增强型图像序列着色)
[03:10] 🧩 Byte Latent Transformer: Patches Scale Better Than Tokens(字节潜在变换器:补丁尺度优于标记)
[03:56] 🧠 Causal Diffusion Transformers for Generative Modeling(因果扩散变换器用于生成建模)
[04:33] 🤖 Smaller Language Models Are Better Instruction Evolvers(更小的语言模型是更好的指令进化器)
[05:16] 🌟 IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations(IDArb:任意数量输入视图和光照下的内在分解)
[06:02] 🌳 SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models(SPaR:通过树搜索优化自我对弈以提升大型语言模型的指令遵循能力)
[06:47] 🌌 Wonderland: Navigating 3D Scenes from a Single Image(奇境:从单张图像导航3D场景)
[07:32] 🔬 GaussianProperty: Integrating Physical Properties to 3D Gaussians with LMMs(高斯属性:将物理属性集成到3D高斯分布中与LMMs结合)
[08:18] ⚡ SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator(SepLLM:通过将一段内容压缩为一个分隔符来加速大型语言模型)
[09:06] 🧠 Wonderful Matrices: Combining for a More Efficient and Effective Foundation Model Architecture(奇妙矩阵:结合以实现更高效和有效的基模型架构)
[09:46] 👩 StrandHead: Text to Strand-Disentangled 3D Head Avatars Using Hair Geometric Priors(StrandHead:基于头发几何先验的文本生成解耦3D头部虚拟形象)
[10:35] 🌐 MOVIS: Enhancing Multi-Object Novel View Synthesis for Indoor Scenes(MOVIS:增强室内场景多物体新颖视角合成)
[11:19] 🎵 Whisper-GPT: A Hybrid Representation Audio Large Language Model(Whisper-GPT:一种混合表示的音频大语言模型)
[12:10] 🤖 TidyBot++: An Open-Source Holonomic Mobile Manipulator for Robot Learning(TidyBot++:用于机器人学习的开源全向移动机械手)
[13:01] 🔒 Just a Simple Transformation is Enough for Data Protection in Vertical Federated Learning(只需简单变换即可实现纵向联邦学习中的数据保护)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递

空空如也
暂无小宇宙热门评论