本期的 15 篇论文如下:
[00:23] 🗂 CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training(CLIMB:基于聚类的迭代数据混合引导预训练方法)
[01:03] 🧪 Antidistillation Sampling(反蒸馏采样)
[01:41] 🤝 A Strategic Coordination Framework of Small LLMs Matches Large LLMs in Data Synthesis(小型LLM的策略协调框架在数据合成方面与大型LLM相媲美)
[02:26] 🎬 Packing Input Frame Context in Next-Frame Prediction Models for Video Generation(视频生成中基于帧打包的下一帧预测模型)
[03:02] 🤖 Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling(生成,但验证:通过回顾重采样减少视觉-语言模型中的幻觉)
[03:43] 🧠 WORLDMEM: Long-term Consistent World Simulation with Memory(WORLDMEM:基于记忆的长期一致性世界模拟)
[04:27] 🎬 VistaDPO: Video Hierarchical Spatial-Temporal Direct Preference Optimization for Large Video Models(VistaDPO:用于大型视频模型的分层时空直接偏好优化)
[05:01] 🤖 NoisyRollout: Reinforcing Visual Reasoning with Data Augmentation(NoisyRollout:利用数据增强强化视觉推理)
[05:43] 🎨 DMM: Building a Versatile Image Generation Model via Distillation-Based Model Merging(DMM:构建基于蒸馏模型合并的通用图像生成模型)
[06:20] 📊 ChartQAPro: A More Diverse and Challenging Benchmark for Chart Question Answering(ChartQAPro:一个更多样化和更具挑战性的图表问答基准)
[07:07] 🤖 Exploring Expert Failures Improves LLM Agent Tuning(探索专家失败案例以提升LLM Agent的调优效果)
[07:48] 🎨 InstantCharacter: Personalize Any Characters with a Scalable Diffusion Transformer Framework(InstantCharacter:使用可扩展的扩散Transformer框架个性化任何角色)
[08:26] 📸 CCMNet: Leveraging Calibrated Color Correction Matrices for Cross-Camera Color Constancy(CCMNet:利用校准颜色校正矩阵实现跨相机色彩恒常性)
[09:06] 🎬 FocusedAD: Character-centric Movie Audio Description(聚焦AD:以角色为中心的电影音频描述)
[09:39] 🤔 Retrieval-Augmented Generation with Conflicting Evidence(检索增强生成与冲突证据)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递

空空如也
暂无小宇宙热门评论