大家好,欢迎收听《Hugging Face 每日AI论文速递》。今天是2024年7月19日,我们将带您快速浏览今日的14篇热门AI论文,内容涵盖大型语言模型的扩展规律、多模态模型可信度研究以及检索增强机器学习等前沿话题。现在,让我们立即进入精彩的论文世界吧!
[00:28] 📚 Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies(词汇表大小对大型语言模型扩展规律的影响研究)
[01:00] 📚 Scaling Retrieval-Based Language Models with a Trillion-Token Datastore(基于万亿标记数据存储库扩展检索型语言模型)
[01:46] 🌆 Streetscapes: Large-scale Consistent Street View Generation Using Autoregressive Video Diffusion(街景生成:利用自回归视频扩散生成大规模一致性街景视图)
[02:19] 📊 Understanding Reference Policies in Direct Preference Optimization(理解直接偏好优化中的参考策略)
[02:50] 📊 Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study(多模态大型语言模型可信度综合研究基准)
[03:23] 📏 Scaling Granite Code Models to 128K Context(扩展Granite代码模型至128K上下文)
[03:56] 📹 Shape of Motion: 4D Reconstruction from a Single Video(运动形态:单视频4D重建)
[04:26] 🔧 CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization(CodeV:通过多级摘要增强LLMs进行Verilog生成)
[04:53] 📚 Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation(注意力溢出:长上下文缺失项推荐中的语言模型输入模糊)
[05:23] 🧠 BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval(BRIGHT:一个现实且具有挑战性的密集推理检索基准)
[05:54] 📊 PM-LLM-Benchmark: Evaluating Large Language Models on Process Mining Tasks(PM-LLM-Benchmark:评估大型语言模型在过程挖掘任务中的表现)
[06:35] 📊 Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation(正确的基准一致性测试:LLM基准评估指南)
[07:12] 📚 Retrieval-Enhanced Machine Learning: Synthesis and Opportunities(检索增强机器学习:综合与机遇)
[07:48] 📄 A Comparative Study on Automatic Coding of Medical Letters with Explainability(医疗信件自动编码的可解释性比较研究)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递

空空如也
暂无小宇宙热门评论